These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Manual solid-phase synthesis of glutathione analogs: a laboratory-based short course. Soomets U; Zilmer M; Langel U Methods Mol Biol; 2005; 298():241-57. PubMed ID: 16044551 [TBL] [Abstract][Full Text] [Related]
3. A convenient method for synthesis of cyclic peptide libraries. Bourne GT; Nielson JL; Coughlan JF; Darwen P; Campitelli MR; Horton DA; Rhümann A; Love SG; Tran TT; Smythe ML Methods Mol Biol; 2005; 298():151-65. PubMed ID: 16044546 [TBL] [Abstract][Full Text] [Related]
4. A simple and effective method for producing nonrandom peptide libraries using cotton as a carrier in continuous flow peptide synthesizers. Mutulis F; Tysk M; Mutule I; Wikberg JE J Comb Chem; 2003; 5(1):1-7. PubMed ID: 12523828 [TBL] [Abstract][Full Text] [Related]
5. Unit automation in high throughput screening. Menke KC Methods Mol Biol; 2002; 190():195-212. PubMed ID: 12029822 [No Abstract] [Full Text] [Related]
6. Fundamentals of modern peptide synthesis. Amblard M; Fehrentz JA; Martinez J; Subra G Methods Mol Biol; 2005; 298():3-24. PubMed ID: 15897611 [TBL] [Abstract][Full Text] [Related]
7. Microwave-assisted parallel synthesis of a 14-helical beta-peptide library. Murray JK; Gellman SH J Comb Chem; 2006; 8(1):58-65. PubMed ID: 16398554 [TBL] [Abstract][Full Text] [Related]
8. Robotic nanolitre protein crystallisation at the MRC Laboratory of Molecular Biology. Stock D; Perisic O; Löwe J Prog Biophys Mol Biol; 2005 Jul; 88(3):311-27. PubMed ID: 15652247 [TBL] [Abstract][Full Text] [Related]
9. High-throughput purification of single compounds and libraries. Schaffrath M; von Roedern E; Hamley P; Stilz HU J Comb Chem; 2005; 7(4):546-53. PubMed ID: 16004497 [TBL] [Abstract][Full Text] [Related]
10. SynCar: an approach to automated synthesis. Weber A; von Roedern E; Stilz HU J Comb Chem; 2005; 7(2):178-84. PubMed ID: 15762744 [TBL] [Abstract][Full Text] [Related]
11. Construction and validation of an automated flow hydrogenation instrument for application in high-throughput organic chemistry. Clapham B; Wilson NS; Michmerhuizen MJ; Blanchard DP; Dingle DM; Nemcek TA; Pan JY; Sauer DR J Comb Chem; 2008; 10(1):88-93. PubMed ID: 18095655 [TBL] [Abstract][Full Text] [Related]
12. Peptide synthesis via fragment condensation. Nyfeler R Methods Mol Biol; 1994; 35():303-16. PubMed ID: 7894607 [No Abstract] [Full Text] [Related]
13. Microfluidic systems for high-throughput and combinatorial chemistry. Cullen CJ; Wootton RC; de Mello AJ Curr Opin Drug Discov Devel; 2004 Nov; 7(6):798-806. PubMed ID: 15595440 [TBL] [Abstract][Full Text] [Related]
14. Techniques for high-throughput characterization of peptides, oligonucleotides and catalysis efficiency. Kenseth JR; He Y; Tallman D; Pang HM; Coldiron SJ Curr Opin Chem Biol; 2004 Jun; 8(3):327-33. PubMed ID: 15183332 [TBL] [Abstract][Full Text] [Related]
15. Automated medicinal chemistry. Koppitz M; Eis K Drug Discov Today; 2006 Jun; 11(11-12):561-8. PubMed ID: 16713909 [TBL] [Abstract][Full Text] [Related]
16. Continuous-flow high pressure hydrogenation reactor for optimization and high-throughput synthesis. Jones RV; Godorhazy L; Varga N; Szalay D; Urge L; Darvas F J Comb Chem; 2006; 8(1):110-6. PubMed ID: 16398561 [TBL] [Abstract][Full Text] [Related]
17. [Synthesis of chemical probes based on combinatorial chemistry and lab automation]. Tanaka H; Doi T; Takahashi T Tanpakushitsu Kakusan Koso; 2007 Oct; 52(13 Suppl):1655-60. PubMed ID: 18051395 [No Abstract] [Full Text] [Related]