These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 16044624)
1. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments. Yang Y; Soyemi OO; Landry MR; Soller BR Opt Express; 2005 Mar; 13(5):1570-9. PubMed ID: 16044624 [TBL] [Abstract][Full Text] [Related]
2. Influence of a fat on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation. Lin L; Niwayama M; Shiga T; Kudo N; Takahashi M; Yamamoto K Front Med Biol Eng; 2000; 10(1):43-58. PubMed ID: 10898475 [TBL] [Abstract][Full Text] [Related]
3. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. Liu Q; Zhu C; Ramanujam N J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848 [TBL] [Abstract][Full Text] [Related]
4. Optical measurements of absorption changes in two-layered diffusive media. Fabbri F; Sassaroli A; Henry ME; Fantini S Phys Med Biol; 2004 Apr; 49(7):1183-201. PubMed ID: 15128197 [TBL] [Abstract][Full Text] [Related]
5. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Liu Q; Ramanujam N Appl Opt; 2006 Jul; 45(19):4776-90. PubMed ID: 16799693 [TBL] [Abstract][Full Text] [Related]
6. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue. Hallacoglu B; Sassaroli A; Fantini S PLoS One; 2013; 8(5):e64095. PubMed ID: 23724023 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Palmer GM; Ramanujam N Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550 [TBL] [Abstract][Full Text] [Related]
8. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance. Sato C; Shimada M; Tanikawa Y; Hoshi Y J Biomed Opt; 2013 Sep; 18(9):097005. PubMed ID: 24057194 [TBL] [Abstract][Full Text] [Related]
9. In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model. Kienle A; Glanzmann T Phys Med Biol; 1999 Nov; 44(11):2689-702. PubMed ID: 10588278 [TBL] [Abstract][Full Text] [Related]
10. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Simpson CR; Kohl M; Essenpreis M; Cope M Phys Med Biol; 1998 Sep; 43(9):2465-78. PubMed ID: 9755939 [TBL] [Abstract][Full Text] [Related]
11. Fast imaging of high-resolution two-dimensional effective attenuation profile from diffuse reflectance. Tse J; Chen LK J Biomed Opt; 2012 Apr; 17(4):046005. PubMed ID: 22559683 [TBL] [Abstract][Full Text] [Related]
12. The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach. Dehghani H; Brooksby B; Vishwanath K; Pogue BW; Paulsen KD Phys Med Biol; 2003 Aug; 48(16):2713-27. PubMed ID: 12974584 [TBL] [Abstract][Full Text] [Related]
13. [Research on the near-infrared (NIR) photon migration in multi-layered structures of biological tissues]. Ding H; Wang F; Lin F; Su C Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Apr; 21(2):155-9. PubMed ID: 12947609 [TBL] [Abstract][Full Text] [Related]
14. Validation and Comparison of Monte Carlo and Finite Element Method in Forward Modeling for Near Infrared Optical Tomography. Jiang J; Ren W; Isler H; Kalyanov A; Lindner S; Aldo DCM; Rudin M; Wolf M Adv Exp Med Biol; 2020; 1232():307-313. PubMed ID: 31893425 [TBL] [Abstract][Full Text] [Related]
15. Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra. Sung KB; Shih KW; Hsu FW; Hsieh HP; Chuang MJ; Hsiao YH; Su YH; Tien GH J Biomed Opt; 2014; 19(7):77002. PubMed ID: 25027003 [TBL] [Abstract][Full Text] [Related]
16. Near infrared spectroscopy for body fat sensing in neonates: quantitative analysis by GAMOS simulations. Mustafa FH; Jones PW; McEwan AL Biomed Eng Online; 2017 Jan; 16(1):14. PubMed ID: 28086963 [TBL] [Abstract][Full Text] [Related]
18. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models. Kao TC; Sung KB J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242 [TBL] [Abstract][Full Text] [Related]
19. A New Method Based on Graphics Processing Units for Fast Near-Infrared Optical Tomography. Jiang J; Ahnen L; Kalyanov A; Lindner S; Wolf M; Majos SS Adv Exp Med Biol; 2017; 977():191-197. PubMed ID: 28685445 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo simulation of NIR diffuse reflectance in the normal and diseased human breast tissues. Prince S; Malarvizhi S Biofactors; 2007; 30(4):255-63. PubMed ID: 18607075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]