BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16045207)

  • 21. Soot-velocity measurements by particle vaporization velocimetry.
    Seitzman JM; Wainner RT; Yang P
    Opt Lett; 1999 Nov; 24(22):1632-4. PubMed ID: 18079887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence.
    Will S; Schraml S; Bader K; Leipertz A
    Appl Opt; 1998 Aug; 37(24):5647-58. PubMed ID: 18286051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A double pulse LII experiment on carbon nanoparticles: insight into optical properties.
    Migliorini F; Belmuso S; Ciniglia D; Dondè R; De Iuliis S
    Phys Chem Chem Phys; 2022 Aug; 24(33):19837-19843. PubMed ID: 35946946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soot volume fraction and particle size measurements with laser-induced incandescence.
    Mewes B; Seitzman JM
    Appl Opt; 1997 Jan; 36(3):709-17. PubMed ID: 18250729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soot particle disintegration and detection by two-laser excimer laser fragmentation fluorescence spectroscopy.
    Stipe CB; Lucas D; Koshland CP; Sawyer RF
    Appl Opt; 2005 Nov; 44(31):6537-44. PubMed ID: 16270542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laser-induced incandescence for non-soot nanoparticles: recent trends and current challenges.
    Sipkens TA; Menser J; Dreier T; Schulz C; Smallwood GJ; Daun KJ
    Appl Phys B; 2022; 128(4):72. PubMed ID: 35308124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Particle identification by laser-induced incandescence in a solid-state laser cavity.
    Stephens M; Turner N; Sandberg J
    Appl Opt; 2003 Jul; 42(19):3726-36. PubMed ID: 12868806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kalman filter approach for uncertainty quantification in time-resolved laser-induced incandescence.
    Hadwin PJ; Sipkens TA; Thomson KA; Liu F; Daun KJ
    J Opt Soc Am A Opt Image Sci Vis; 2018 Mar; 35(3):386-396. PubMed ID: 29522040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of FRAME for Simultaneous LIF and LII Imaging in Sooting Flames Using a Single Camera.
    Mishra YN; Boggavarapu P; Chorey D; Zigan L; Will S; Deshmukh D; Rayavarapu R
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laser-induced incandescence applied to droplet combustion.
    Wal RL; Dietrich DL
    Appl Opt; 1995 Feb; 34(6):1103-7. PubMed ID: 21037639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Candle flame soot sizing by planar time-resolved laser-induced incandescence.
    Verdugo I; Cruz JJ; Álvarez E; Reszka P; Figueira da Silva LF; Fuentes A
    Sci Rep; 2020 Jul; 10(1):11364. PubMed ID: 32647154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental investigation on an acoustically forced flame with simultaneous high-speed LII and stereo PIV at 20  kHz.
    Fu C; Yang X; Li Z; Zhang H; Yang Y; Gao Y
    Appl Opt; 2019 Apr; 58(10):C104-C111. PubMed ID: 31045080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field.
    Kamat AM; van Duin AC; Yakovlev A
    J Phys Chem A; 2010 Dec; 114(48):12561-72. PubMed ID: 21067165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms.
    Michelsen HA; Witze PO; Kayes D; Hochgreb S
    Appl Opt; 2003 Sep; 42(27):5577-90. PubMed ID: 14526849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-Resolved Laser-Induced Incandescence Measurements on Aerosolized Nickel Nanoparticles.
    Robinson-Enebeli S; Talebi-Moghaddam S; Daun KJ
    J Phys Chem A; 2021 Jul; 125(28):6273-6285. PubMed ID: 34240871
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatially resolved soot-absorption measurements in flames using laser vaporizationof particles.
    Dasch CJ
    Opt Lett; 1984 Jun; 9(6):214-6. PubMed ID: 19721548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative investigation of soot distribution by laser-induced incandescence.
    Bryce DJ; Ladommatos N; Zhao H
    Appl Opt; 2000 Sep; 39(27):5012-22. PubMed ID: 18350100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequential signal detection for high dynamic range time-resolved laser-induced incandescence.
    Mansmann R; Thomson K; Smallwood G; Dreier T; Schulz C
    Opt Express; 2017 Feb; 25(3):2413-2421. PubMed ID: 29519087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Are emissions of black carbon from gasoline vehicles underestimated? Insights from near and on-road measurements.
    Liggio J; Gordon M; Smallwood G; Li SM; Stroud C; Staebler R; Lu G; Lee P; Taylor B; Brook JR
    Environ Sci Technol; 2012 May; 46(9):4819-28. PubMed ID: 22309316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames.
    Meyer TR; Halls BR; Jiang N; Slipchenko MN; Roy S; Gord JR
    Opt Express; 2016 Dec; 24(26):29547-29555. PubMed ID: 28059341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.