These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16045207)

  • 41. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.
    Canagaratna MR; Massoli P; Browne EC; Franklin JP; Wilson KR; Onasch TB; Kirchstetter TW; Fortner EC; Kolb CE; Jayne JT; Kroll JH; Worsnop DR
    J Phys Chem A; 2015 May; 119(19):4589-99. PubMed ID: 25526741
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous determination of primary particle size distribution and thermal accommodation coefficient of soot aggregates using low-fluence LII.
    Zhang JY; Qi H; Shi JW; Gao BH; Ren YT
    Opt Express; 2020 Dec; 28(25):37249-37264. PubMed ID: 33379563
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fractal-like Aggregates: Relation between Morphology and Physical Properties.
    Filippov AV; Zurita M; Rosner DE
    J Colloid Interface Sci; 2000 Sep; 229(1):261-273. PubMed ID: 10942568
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of Pressure on Burning and Soot Characteristics of RP-3 Kerosene Droplets under Sub-Atmospheric Pressure.
    Huang J; He Y; Zhang H; Dai Y; Wang Z
    ACS Omega; 2023 Apr; 8(15):14053-14065. PubMed ID: 37091373
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance of photomultipliers in the context of laser-induced incandescence.
    Mansmann R; Dreier T; Schulz C
    Appl Opt; 2017 Oct; 56(28):7849-7860. PubMed ID: 29047769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure.
    Hentschel J; Suntz R; Bockhorn H
    Appl Opt; 2005 Nov; 44(31):6673-81. PubMed ID: 16270556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames.
    Meyer TR; Roy S; Belovich VM; Corporan E; Gord JR
    Appl Opt; 2005 Jan; 44(3):445-54. PubMed ID: 15717834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Absorption correction of two-color laser-induced incandescence signals for soot volume fraction measurements.
    Migliorini F; De Iuliis S; Cignoli F; Zizak G
    Appl Opt; 2006 Oct; 45(29):7706-11. PubMed ID: 17068607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Particle formation from pulsed laser irradiation of soot aggregates studied with a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope.
    Michelsen HA; Tivanski AV; Gilles MK; van Poppel LH; Dansson MA; Buseck PR
    Appl Opt; 2007 Feb; 46(6):959-77. PubMed ID: 17279144
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laser-induced incandescence applied to metal nanostructures.
    Vander Wal RL; Ticich TM; West JR
    Appl Opt; 1999 Sep; 38(27):5867-79. PubMed ID: 18324102
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of an improved data analysis approach for combined laser extinction and two-angle elastic light scattering diagnostics of soot aggregates.
    Zhang T; Thomson MJ
    Appl Opt; 2016 Feb; 55(4):920-8. PubMed ID: 26836101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.
    Khalizov AF; Xue H; Wang L; Zheng J; Zhang R
    J Phys Chem A; 2009 Feb; 113(6):1066-74. PubMed ID: 19146408
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of laser-induced incandescence to suspended carbon black particles.
    Sommer R; Leipertz A
    Opt Lett; 2007 Jul; 32(13):1947-9. PubMed ID: 17603623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dependence of soot optical properties on particle morphology: measurements and model comparisons.
    Radney JG; You R; Ma X; Conny JM; Zachariah MR; Hodges JT; Zangmeister CD
    Environ Sci Technol; 2014 Mar; 48(6):3169-76. PubMed ID: 24548253
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laser-induced incandescence study on the metal aerosol particles as the effect of the surrounding gas medium.
    Murakami Y; Sugatani T; Nosaka Y
    J Phys Chem A; 2005 Oct; 109(40):8994-9000. PubMed ID: 16332003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Defining regimes and analytical expressions for fluence curves in pulsed laser heating of aerosolized nanoparticles.
    Sipkens TA; Daun KJ
    Opt Express; 2017 Mar; 25(5):5684-5696. PubMed ID: 28380825
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures.
    Lehre T; Bockhorn H; Jungfleisch B; Suntz R
    Chemosphere; 2003 Jun; 51(10):1055-61. PubMed ID: 12718970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of Organic Coating on Soot Angular and Spectral Scattering Properties.
    Lefevre G; Yon J; Bouvier M; Liu F; Coppalle A
    Environ Sci Technol; 2019 Jun; 53(11):6383-6391. PubMed ID: 31059244
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of dicarboxylic acid coating on the optical properties of soot.
    Xue H; Khalizov AF; Wang L; Zheng J; Zhang R
    Phys Chem Chem Phys; 2009 Sep; 11(36):7869-75. PubMed ID: 19727494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.