BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16045289)

  • 1. Application of the random forest method in studies of local lymph node assay based skin sensitization data.
    Li S; Fedorowicz A; Singh H; Soderholm SC
    J Chem Inf Model; 2005; 45(4):952-64. PubMed ID: 16045289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random forest: a classification and regression tool for compound classification and QSAR modeling.
    Svetnik V; Liaw A; Tong C; Culberson JC; Sheridan RP; Feuston BP
    J Chem Inf Comput Sci; 2003; 43(6):1947-58. PubMed ID: 14632445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new descriptor selection scheme for SVM in unbalanced class problem: a case study using skin sensitisation dataset.
    Li S; Fedorowicz A; Andrew ME
    SAR QSAR Environ Res; 2007; 18(5-6):423-41. PubMed ID: 17654333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Categorical QSAR Models for skin sensitization based upon local lymph node assay classification measures part 2: 4D-fingerprint three-state and two-2-state logistic regression models.
    Li Y; Pan D; Liu J; Kern PS; Gerberick GF; Hopfinger AJ; Tseng YJ
    Toxicol Sci; 2007 Oct; 99(2):532-44. PubMed ID: 17675333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of differential gene expression for microarray data using recursive random forest.
    Wu XY; Wu ZY; Li K
    Chin Med J (Engl); 2008 Dec; 121(24):2492-6. PubMed ID: 19187584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum mechanical structure-activity relationship analyses for skin sensitization.
    Miller MD; Yourtee DM; Glaros AG; Chappelow CC; Eick JD; Holder AJ
    J Chem Inf Model; 2005; 45(4):924-9. PubMed ID: 16045286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization.
    Roberts DW; Patlewicz G; Kern PS; Gerberick F; Kimber I; Dearman RJ; Ryan CA; Basketter DA; Aptula AO
    Chem Res Toxicol; 2007 Jul; 20(7):1019-30. PubMed ID: 17555332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local lymph node assay (LLNA) for detection of sensitization capacity of chemicals.
    Gerberick GF; Ryan CA; Dearman RJ; Kimber I
    Methods; 2007 Jan; 41(1):54-60. PubMed ID: 16938465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of vehicle on the relative potency of skin-sensitizing chemicals in the local lymph node assay.
    Jowsey IR; Clapp CJ; Safford B; Gibbons BT; Basketter DA
    Cutan Ocul Toxicol; 2008; 27(2):67-75. PubMed ID: 18568891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contemporary QSAR classifiers compared.
    Bruce CL; Melville JL; Pickett SD; Hirst JD
    J Chem Inf Model; 2007; 47(1):219-27. PubMed ID: 17238267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive identification of human skin sensitization thresholds.
    Basketter DA; Clapp C; Jefferies D; Safford B; Ryan CA; Gerberick F; Dearman RJ; Kimber I
    Contact Dermatitis; 2005 Nov; 53(5):260-7. PubMed ID: 16283904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the accuracy of ligand overlay methods with Random Forest models.
    Nandigam RK; Evans DA; Erickson JA; Kim S; Sutherland JJ
    J Chem Inf Model; 2008 Dec; 48(12):2386-94. PubMed ID: 19053524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-enzymatic glutathione reactivity and in vitro toxicity: a non-animal approach to skin sensitization.
    Aptula AO; Patlewicz G; Roberts DW; Schultz TW
    Toxicol In Vitro; 2006 Mar; 20(2):239-47. PubMed ID: 16112535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships.
    Luechtefeld T; Maertens A; McKim JM; Hartung T; Kleensang A; Sá-Rocha V
    J Appl Toxicol; 2015 Nov; 35(11):1361-1371. PubMed ID: 26046447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The local lymph node assay: current position in the regulatory classification of skin sensitizing chemicals.
    Basketter DA; Gerberick GF; Kimber I
    Cutan Ocul Toxicol; 2007; 26(4):293-301. PubMed ID: 18058304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative and mechanistic read across for predicting the skin sensitization potential of alkenes acting via Michael addition.
    Enoch SJ; Cronin MT; Schultz TW; Madden JC
    Chem Res Toxicol; 2008 Feb; 21(2):513-20. PubMed ID: 18189367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the random forest classification method to peaks detected from mass spectrometric proteomic profiles of cancer patients and controls.
    Barrett JH; Cairns DA
    Stat Appl Genet Mol Biol; 2008; 7(2):Article4. PubMed ID: 18312218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nothing is perfect, not even the local lymph node assay: a commentary and the implications for REACH.
    Basketter DA; McFadden JF; Gerberick F; Cockshott A; Kimber I
    Contact Dermatitis; 2009 Feb; 60(2):65-9. PubMed ID: 19207375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. B220 analysis with the local lymph node assay: proposal for a more flexible prediction model.
    Betts CJ; Dearman RJ; Kimber I; Ryan CA; Gerberick GF; Lalko J; Api AM
    J Appl Toxicol; 2007; 27(5):506-10. PubMed ID: 17541942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.
    Mohr JA; Jain BJ; Obermayer K
    J Chem Inf Model; 2008 Sep; 48(9):1868-81. PubMed ID: 18767832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.