These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16045296)

  • 1. Enhanced virtual screening by combined use of two docking methods: getting the most on a limited budget.
    Maiorov V; Sheridan RP
    J Chem Inf Model; 2005; 45(4):1017-23. PubMed ID: 16045296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considerations in compound database preparation--"hidden" impact on virtual screening results.
    Knox AJ; Meegan MJ; Carta G; Lloyd DG
    J Chem Inf Model; 2005; 45(6):1908-19. PubMed ID: 16309298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pso@autodock: a fast flexible molecular docking program based on Swarm intelligence.
    Namasivayam V; Günther R
    Chem Biol Drug Des; 2007 Dec; 70(6):475-84. PubMed ID: 17986206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.
    Mizutani MY; Itai A
    J Med Chem; 2004 Sep; 47(20):4818-28. PubMed ID: 15369385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical assessment of the automated AutoDock as a new docking tool for virtual screening.
    Park H; Lee J; Lee S
    Proteins; 2006 Nov; 65(3):549-54. PubMed ID: 16988956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel search engine for virtual screening of very large databases.
    Vidal D; Thormann M; Pons M
    J Chem Inf Model; 2006; 46(2):836-43. PubMed ID: 16563015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A knowledge-based weighting approach to ligand-based virtual screening.
    Stiefl N; Zaliani A
    J Chem Inf Model; 2006; 46(2):587-96. PubMed ID: 16562987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast structure-based virtual ligand screening combining FRED, DOCK, and Surflex.
    Miteva MA; Lee WH; Montes MO; Villoutreix BO
    J Med Chem; 2005 Sep; 48(19):6012-22. PubMed ID: 16162004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of high throughput virtual screening by combining shape-matching and docking methods.
    Lee HS; Choi J; Kufareva I; Abagyan R; Filikov A; Yang Y; Yoon S
    J Chem Inf Model; 2008 Mar; 48(3):489-97. PubMed ID: 18302357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual screening strategies in drug discovery.
    McInnes C
    Curr Opin Chem Biol; 2007 Oct; 11(5):494-502. PubMed ID: 17936059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic clustering of docking poses in virtual screening process using self-organizing map.
    Bouvier G; Evrard-Todeschi N; Girault JP; Bertho G
    Bioinformatics; 2010 Jan; 26(1):53-60. PubMed ID: 19910307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular docking for substrate identification: the short-chain dehydrogenases/reductases.
    Favia AD; Nobeli I; Glaser F; Thornton JM
    J Mol Biol; 2008 Jan; 375(3):855-74. PubMed ID: 18036612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP.
    Zacharias M
    Proteins; 2004 Mar; 54(4):759-67. PubMed ID: 14997571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of 3D virtual ligand screening methods: impact of the molecular alignment on enrichment.
    Giganti D; Guillemain H; Spadoni JL; Nilges M; Zagury JF; Montes M
    J Chem Inf Model; 2010 Jun; 50(6):992-1004. PubMed ID: 20527883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of new plasmepsin inhibitors: a virtual high throughput screening approach on the EGEE grid.
    Kasam V; Zimmermann M; Maass A; Schwichtenberg H; Wolf A; Jacq N; Breton V; Hofmann-Apitius M
    J Chem Inf Model; 2007; 47(5):1818-28. PubMed ID: 17727268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SODOCK: swarm optimization for highly flexible protein-ligand docking.
    Chen HM; Liu BF; Huang HL; Hwang SF; Ho SY
    J Comput Chem; 2007 Jan; 28(2):612-23. PubMed ID: 17186483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of potent thermolysin inhibitors using structure based virtual screening and binding assays.
    Khan MT; Fuskevåg OM; Sylte I
    J Med Chem; 2009 Jan; 52(1):48-61. PubMed ID: 19072688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.