These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 16045308)

  • 21. Virtual screening to enrich hit lists from high-throughput screening: a case study on small-molecule inhibitors of angiogenin.
    Jenkins JL; Kao RY; Shapiro R
    Proteins; 2003 Jan; 50(1):81-93. PubMed ID: 12471601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FLAP: GRID molecular interaction fields in virtual screening. validation using the DUD data set.
    Cross S; Baroni M; Carosati E; Benedetti P; Clementi S
    J Chem Inf Model; 2010 Aug; 50(8):1442-50. PubMed ID: 20690627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-based virtual screening with supervised consensus scoring: evaluation of pose prediction and enrichment factors.
    Teramoto R; Fukunishi H
    J Chem Inf Model; 2008 Apr; 48(4):747-54. PubMed ID: 18318474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scoring ligand similarity in structure-based virtual screening.
    Zavodszky MI; Rohatgi A; Van Voorst JR; Yan H; Kuhn LA
    J Mol Recognit; 2009; 22(4):280-92. PubMed ID: 19235177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New scoring functions for virtual screening from molecular dynamics simulations with a quantum-refined force-field (QRFF-MD). Application to cyclin-dependent kinase 2.
    Ferrara P; Curioni A; Vangrevelinghe E; Meyer T; Mordasini T; Andreoni W; Acklin P; Jacoby E
    J Chem Inf Model; 2006; 46(1):254-63. PubMed ID: 16426061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Consensus scoring with feature selection for structure-based virtual screening.
    Teramoto R; Fukunishi H
    J Chem Inf Model; 2008 Feb; 48(2):288-95. PubMed ID: 18229906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of binary QSAR models derived from LUDI and MOE scoring functions for structure based virtual screening.
    Prathipati P; Saxena AK
    J Chem Inf Model; 2006; 46(1):39-51. PubMed ID: 16426038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing the signal-to-noise ratio of scoring functions for protein--ligand docking.
    Seifert MH
    J Chem Inf Model; 2008 Mar; 48(3):602-12. PubMed ID: 18293951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Normalizing molecular docking rankings using virtually generated decoys.
    Wallach I; Jaitly N; Nguyen K; Schapira M; Lilien R
    J Chem Inf Model; 2011 Aug; 51(8):1817-30. PubMed ID: 21699246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical space sampling in virtual screening by different crystal structures.
    Brooijmans N; Humblet C
    Chem Biol Drug Des; 2010 Dec; 76(6):472-9. PubMed ID: 20958920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virtual screening data fusion using both structure- and ligand-based methods.
    Svensson F; Karlén A; Sköld C
    J Chem Inf Model; 2012 Jan; 52(1):225-32. PubMed ID: 22148635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative analysis of pharmacophore screening tools.
    Sanders MP; Barbosa AJ; Zarzycka B; Nicolaes GA; Klomp JP; de Vlieg J; Del Rio A
    J Chem Inf Model; 2012 Jun; 52(6):1607-20. PubMed ID: 22646988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring.
    Radestock S; Weil T; Renner S
    J Chem Inf Model; 2008 May; 48(5):1104-17. PubMed ID: 18442221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pROC-Chemotype Plots Enhance the Interpretability of Benchmarking Results in Structure-Based Virtual Screening.
    Ibrahim TM; Bauer MR; Dörr A; Veyisoglu E; Boeckler FM
    J Chem Inf Model; 2015 Nov; 55(11):2297-307. PubMed ID: 26434782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In silico screening against wild-type and mutant Plasmodium falciparum dihydrofolate reductase.
    Fogel GB; Cheung M; Pittman E; Hecht D
    J Mol Graph Model; 2008 Apr; 26(7):1145-52. PubMed ID: 18037315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual ligand screening against Escherichia coli dihydrofolate reductase: improving docking enrichment using physics-based methods.
    Bernacki K; Kalyanaraman C; Jacobson MP
    J Biomol Screen; 2005 Oct; 10(7):675-81. PubMed ID: 16170049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supervised consensus scoring for docking and virtual screening.
    Teramoto R; Fukunishi H
    J Chem Inf Model; 2007; 47(2):526-34. PubMed ID: 17295466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Knowledge-based scoring functions in drug design. 1. Developing a target-specific method for kinase-ligand interactions.
    Xue M; Zheng M; Xiong B; Li Y; Jiang H; Shen J
    J Chem Inf Model; 2010 Aug; 50(8):1378-86. PubMed ID: 20681607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.