BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16045339)

  • 21. A tri-n-octylphosphine-assisted successive ionic layer adsorption and reaction method to synthesize multilayered core-shell CdSe-ZnS quantum dots with extremely high quantum yield.
    Hao JJ; Zhou J; Zhang CY
    Chem Commun (Camb); 2013 Jul; 49(56):6346-8. PubMed ID: 23748410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step aqueous synthesis of blue-emitting glutathione-capped ZnSe(1-x)Te(x) alloyed nanocrystals.
    Lesnyak V; Dubavik A; Plotnikov A; Gaponik N; Eychmüller A
    Chem Commun (Camb); 2010 Feb; 46(6):886-8. PubMed ID: 20107639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Manipulation of electron orbitals in hard-wall InAs/InP nanowire quantum dots.
    Roddaro S; Pescaglini A; Ercolani D; Sorba L; Beltram F
    Nano Lett; 2011 Apr; 11(4):1695-9. PubMed ID: 21446718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of cRGD-peptide conjugated near-infrared CdTe/ZnSe core-shell quantum dots for in vivo cancer targeting and imaging.
    Yong KT; Roy I; Law WC; Hu R
    Chem Commun (Camb); 2010 Oct; 46(38):7136-8. PubMed ID: 20820500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-organized ZnSe quantum dots: synthesis and characterization.
    Kaushik D; Singh RR; Sharma AB; Gupta D; Sharma M; Pandey RK
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1502-11. PubMed ID: 18468182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of Cysteine-Capped Zn(x)Cd(1)(-)(x)Se alloyed quantum dots emitting in the blue-green spectral range.
    Liu FC; Cheng TL; Shen CC; Tseng WL; Chiang MY
    Langmuir; 2008 Mar; 24(5):2162-7. PubMed ID: 18205420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size.
    Bailey RE; Nie S
    J Am Chem Soc; 2003 Jun; 125(23):7100-6. PubMed ID: 12783563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. InAs/InP radial nanowire heterostructures as high electron mobility devices.
    Jiang X; Xiong Q; Nam S; Qian F; Li Y; Lieber CM
    Nano Lett; 2007 Oct; 7(10):3214-8. PubMed ID: 17867718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo whole animal fluorescence imaging of a microparticle-based oral vaccine containing (CuInSe(x)S(2-x))/ZnS core/shell quantum dots.
    Panthani MG; Khan TA; Reid DK; Hellebusch DJ; Rasch MR; Maynard JA; Korgel BA
    Nano Lett; 2013 Sep; 13(9):4294-8. PubMed ID: 23915166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interface Engineering of Mn-Doped ZnSe-Based Core/Shell Nanowires for Tunable Host-Dopant Coupling.
    Li ZJ; Hofman E; Blaker A; Davis AH; Dzikovski B; Ma DK; Zheng W
    ACS Nano; 2017 Dec; 11(12):12591-12600. PubMed ID: 29172442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers.
    Tahvili MS; Du L; Heck MJ; Nötzel R; Smit MK; Bente EA
    Opt Express; 2012 Mar; 20(7):8117-35. PubMed ID: 22453482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications.
    Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK
    Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires.
    Martínez LJ; Alén B; Prieto I; Fuster D; González L; González Y; Dotor ML; Postigo PA
    Opt Express; 2009 Aug; 17(17):14993-5000. PubMed ID: 19687977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile, large scale synthesis of water soluble AgInSe
    Oluwafemi OS; May BMM; Parani S; Tsolekile N
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110181. PubMed ID: 31753367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity.
    Pons T; Pic E; Lequeux N; Cassette E; Bezdetnaya L; Guillemin F; Marchal F; Dubertret B
    ACS Nano; 2010 May; 4(5):2531-8. PubMed ID: 20387796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence.
    Liang GX; Li LL; Liu HY; Zhang JR; Burda C; Zhu JJ
    Chem Commun (Camb); 2010 May; 46(17):2974-6. PubMed ID: 20386841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly-photoluminescent ZnSe nanocrystals via a non-injection-based approach with precursor reactivity elevated by a secondary phosphine.
    Yu K; Hrdina A; Zhang X; Ouyang J; Leek DM; Wu X; Gong M; Wilkinson D; Li C
    Chem Commun (Camb); 2011 Aug; 47(31):8811-3. PubMed ID: 21738907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ZnF
    Li H; Zhang W; Bian Y; Ahn TK; Shen H; Ji B
    Nano Lett; 2022 May; 22(10):4067-4073. PubMed ID: 35536635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots.
    Liang GX; Liu HY; Zhang JR; Zhu JJ
    Talanta; 2010 Mar; 80(5):2172-6. PubMed ID: 20152468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness.
    Toufanian R; Piryatinski A; Mahler AH; Iyer R; Hollingsworth JA; Dennis AM
    Front Chem; 2018; 6():567. PubMed ID: 30515380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.