BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16045339)

  • 41. Near Infrared Light-Emitting Diodes Based on Colloidal InAs/ZnSe Core/Thick-Shell Quantum Dots.
    Roshan H; Zhu D; Piccinotti D; Dai J; De Franco M; Barelli M; Prato M; De Trizio L; Manna L; Di Stasio F
    Adv Sci (Weinh); 2024 Jun; 11(23):e2400734. PubMed ID: 38622892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II).
    Xia Y; Zhu C
    Analyst; 2008 Jul; 133(7):928-32. PubMed ID: 18575647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrostatic spin control in InAs/InP nanowire quantum dots.
    Romeo L; Roddaro S; Pitanti A; Ercolani D; Sorba L; Beltram F
    Nano Lett; 2012 Sep; 12(9):4490-4. PubMed ID: 22849393
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigation of the internal heterostructure of highly luminescent quantum dot-quantum well nanocrystals.
    Santra PK; Viswanatha R; Daniels SM; Pickett NL; Smith JM; O'Brien P; Sarma DD
    J Am Chem Soc; 2009 Jan; 131(2):470-7. PubMed ID: 19140789
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Luminescent, low-toxic and stable gradient-alloyed Fe:ZnSe(S)@ZnSe(S) core:shell quantum dots as a sensitive fluorescent sensor for lead ions.
    Soheyli E; Sahraei R; Nabiyouni G; Nazari F; Tabaraki R; Ghaemi B
    Nanotechnology; 2018 Nov; 29(44):445602. PubMed ID: 30106010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses.
    Lu ZG; Liu JR; Poole PJ; Raymond S; Barrios PJ; Poitras D; Pakulski G; Grant P; Roy-Guay D
    Opt Express; 2009 Aug; 17(16):13609-14. PubMed ID: 19654768
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light.
    Bordas F; Seassal C; Dupuy E; Regreny P; Gendry M; Viktorovitch P; Steel MJ; Rahmani A
    Opt Express; 2009 Mar; 17(7):5439-45. PubMed ID: 19333310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanistic insights into the formation of InP quantum dots.
    Allen PM; Walker BJ; Bawendi MG
    Angew Chem Int Ed Engl; 2010; 49(4):760-2. PubMed ID: 20025010
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complex characterization of short-pulse propagation through InAs/InP quantum-dash optical amplifiers: from the quasi-linear to the two-photon-dominated regime.
    Capua A; Saal A; Karni O; Eisenstein G; Reithmaier JP; Yvind K
    Opt Express; 2012 Jan; 20(1):347-53. PubMed ID: 22274358
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X-Ray Microspectroscopy.
    Veronesi G; Moros M; Castillo-Michel H; Mattera L; Onorato G; Wegner KD; Ling WL; Reiss P; Tortiglione C
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35630-35640. PubMed ID: 31496235
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large scale synthesis of stable tricolor Zn(1-x)Cd(x)Se core/multishell nanocrystals via a facile phosphine-free colloidal method.
    Shen H; Wang H; Zhou C; Niu JZ; Yuan H; Ma L; Li LS
    Dalton Trans; 2011 Sep; 40(36):9180-8. PubMed ID: 21829834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots.
    Zhu H; Prakash A; Benoit DN; Jones CJ; Colvin VL
    Nanotechnology; 2010 Jun; 21(25):255604. PubMed ID: 20516578
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Suppressing the Cation Exchange at the Core/Shell Interface of InP Quantum Dots by a Selenium Shielding Layer Enables Efficient Green Light-Emitting Diodes.
    Sun Z; Wu Q; Wang S; Cao F; Wang Y; Li L; Wang H; Kong L; Yan L; Yang X
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15401-15406. PubMed ID: 35316038
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.
    Reid KR; McBride JR; Freymeyer NJ; Thal LB; Rosenthal SJ
    Nano Lett; 2018 Feb; 18(2):709-716. PubMed ID: 29282985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging.
    Soenen SJ; Manshian BB; Aubert T; Himmelreich U; Demeester J; De Smedt SC; Hens Z; Braeckmans K
    Chem Res Toxicol; 2014 Jun; 27(6):1050-9. PubMed ID: 24869946
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Green and facile synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots.
    Chen Y; Li S; Huang L; Pan D
    Inorg Chem; 2013 Jul; 52(14):7819-21. PubMed ID: 23805901
    [TBL] [Abstract][Full Text] [Related]  

  • 57. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.
    Grigel V; Dupont D; De Nolf K; Hens Z; Tessier MD
    J Am Chem Soc; 2016 Oct; 138(41):13485-13488. PubMed ID: 27701864
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.
    Chibli H; Carlini L; Park S; Dimitrijevic NM; Nadeau JL
    Nanoscale; 2011 Jun; 3(6):2552-9. PubMed ID: 21509403
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Indium Phosphide-Based Quantum Dots with Shell-Enhanced Absorption for Luminescent Down-Conversion.
    Dupont D; Tessier MD; Smet PF; Hens Z
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28582592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes.
    Yang X; Zhao D; Leck KS; Tan ST; Tang YX; Zhao J; Demir HV; Sun XW
    Adv Mater; 2012 Aug; 24(30):4180-5. PubMed ID: 22544765
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.