These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16045915)

  • 1. Estimating propulsive forces--sink or swim?
    Lauder MA; Dabnichki P
    J Biomech; 2005 Oct; 38(10):1984-90. PubMed ID: 16045915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On hydrodynamics of drag and lift of the human arm.
    Gardano P; Dabnichki P
    J Biomech; 2006; 39(15):2767-73. PubMed ID: 16290822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating propulsive forces in swimming from three-dimensional kinematic data.
    Payton CJ; Bartlett RM
    J Sports Sci; 1995 Dec; 13(6):447-54. PubMed ID: 8850570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of body roll amplitude and arm rotation speed on propulsion of arm amputee swimmers.
    Lecrivain G; Payton C; Slaouti A; Kennedy I
    J Biomech; 2010 Apr; 43(6):1111-7. PubMed ID: 20106479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using reverse engineering and computational fluid dynamics to investigate a lower arm amputee swimmer's performance.
    Lecrivain G; Slaouti A; Payton C; Kennedy I
    J Biomech; 2008 Sep; 41(13):2855-9. PubMed ID: 18718594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of the hand's acceleration and the relative contribution of drag and lift forces in front crawl swimming.
    Gourgoulis V; Boli A; Aggeloussis N; Antoniou P; Toubekis A; Mavromatis G
    J Sports Sci; 2015; 33(7):696-712. PubMed ID: 25429796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toy-oriented changes during early arm movements IV: shoulder-elbow coordination.
    Lee HM; Bhat A; Scholz JP; Galloway JC
    Infant Behav Dev; 2008 Sep; 31(3):447-69. PubMed ID: 18316128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of advanced and intermediate 200-m backstroke swimmers' dominant and non-dominant shoulder entry angles across various swimming speeds.
    Andrews C; Bakewell J; Scurr JC
    J Sports Sci; 2011 Apr; 29(7):743-8. PubMed ID: 21416447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biomechanics of swimming: the shoulder and knee.
    Richardson AR
    Clin Sports Med; 1986 Jan; 5(1):103-13. PubMed ID: 3948252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining propulsive force in front crawl swimming: a comparison of two methods.
    Berger MA; Hollander AP; de Groot G
    J Sports Sci; 1999 Feb; 17(2):97-105. PubMed ID: 10069266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of using paddles on hand propulsive forces and Froude efficiency in arm-stroke-only front-crawl swimming at various velocities.
    Tsunokawa T; Mankyu H; Takagi H; Ogita F
    Hum Mov Sci; 2019 Apr; 64():378-388. PubMed ID: 30861470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arm coordination adaptations assessment in swimming.
    Schnitzler C; Seifert L; Ernwein V; Chollet D
    Int J Sports Med; 2008 Jun; 29(6):480-6. PubMed ID: 18027306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Buoyancy is the primary source of generating bodyroll in front-crawl swimming.
    Yanai T
    J Biomech; 2004 May; 37(5):605-12. PubMed ID: 15046989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cervical segmental motion induced by shoulder abduction assessed by magnetic resonance imaging.
    Takasaki H; Hall T; Kaneko S; Iizawa T; Ikemoto Y
    Spine (Phila Pa 1976); 2009 Feb; 34(3):E122-6. PubMed ID: 19179912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic chain of overarm throwing in terms of joint rotations revealed by induced acceleration analysis.
    Hirashima M; Yamane K; Nakamura Y; Ohtsuki T
    J Biomech; 2008 Sep; 41(13):2874-83. PubMed ID: 18678375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.
    Takagi H; Nakashima M; Ozaki T; Matsuuchi K
    J Biomech; 2013 Jul; 46(11):1825-32. PubMed ID: 23764175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational fluid dynamics study of swimmer's hand velocity, orientation, and shape: contributions to hydrodynamics.
    Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ
    Biomed Res Int; 2013; 2013():140487. PubMed ID: 23691493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of a swimmer's hand and arm in steady flow conditions using computational fluid dynamics.
    Bixler B; Riewald S
    J Biomech; 2002 May; 35(5):713-7. PubMed ID: 11955512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of fatigue on stroking characteristics in an arms-only 100-m front-crawl race.
    Toussaint HM; Carol A; Kranenborg H; Truijens MJ
    Med Sci Sports Exerc; 2006 Sep; 38(9):1635-42. PubMed ID: 16960525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.