BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 16046232)

  • 1. Thiol-ene oligomers as dental restorative materials.
    Carioscia JA; Lu H; Stanbury JW; Bowman CN
    Dent Mater; 2005 Dec; 21(12):1137-43. PubMed ID: 16046232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations of step-growth thiol-ene polymerizations for novel dental restoratives.
    Lu H; Carioscia JA; Stansbury JW; Bowman CN
    Dent Mater; 2005 Dec; 21(12):1129-36. PubMed ID: 16046231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials.
    Cramer NB; Couch CL; Schreck KM; Carioscia JA; Boulden JE; Stansbury JW; Bowman CN
    Dent Mater; 2010 Jan; 26(1):21-8. PubMed ID: 19781757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ester-free thiol-ene dental restoratives--Part A: Resin development.
    Podgórski M; Becka E; Claudino M; Flores A; Shah PK; Stansbury JW; Bowman CN
    Dent Mater; 2015 Nov; 31(11):1255-62. PubMed ID: 26360013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of methacrylate-thiol-ene formulations as dental restorative materials.
    Cramer NB; Couch CL; Schreck KM; Boulden JE; Wydra R; Stansbury JW; Bowman CN
    Dent Mater; 2010 Aug; 26(8):799-806. PubMed ID: 20553973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessments of antibacterial and physico-mechanical properties for dental materials with chemically anchored quaternary ammonium moieties: thiol-ene-methacrylate vs. conventional methacrylate system.
    Beigi Burujeny S; Atai M; Yeganeh H
    Dent Mater; 2015 Mar; 31(3):244-61. PubMed ID: 25605414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of fracture toughness and mechanical properties of ternary thiol-ene-methacrylate systems as resin matrix for dental restorative composites.
    Beigi S; Yeganeh H; Atai M
    Dent Mater; 2013 Jul; 29(7):777-87. PubMed ID: 23702048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of methacrylate-based composites containing thio-urethane oligomers.
    Bacchi A; Nelson M; Pfeifer CS
    Dent Mater; 2016 Feb; 32(2):233-9. PubMed ID: 26764173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol-ene-methacrylate composites as dental restorative materials.
    Boulden JE; Cramer NB; Schreck KM; Couch CL; Bracho-Troconis C; Stansbury JW; Bowman CN
    Dent Mater; 2011 Mar; 27(3):267-72. PubMed ID: 21122904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of mechanical properties and shrinkage stress of thiol-ene-methacrylate dental composites with synthesized fluorinated allyl ether.
    Fu W; Wang L; He J
    J Mech Behav Biomed Mater; 2019 Jul; 95():53-59. PubMed ID: 30954914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and photopolymerization of low shrinkage methacrylate monomers containing bulky substituent groups.
    Ge J; Trujillo M; Stansbury J
    Dent Mater; 2005 Dec; 21(12):1163-9. PubMed ID: 15990163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dental resins based on dimer acid dimethacrylates: a route to high conversion with low polymerization shrinkage.
    Lu H; Trujillo-Lemon M; Ge J; Stansbury JW
    Compend Contin Educ Dent; 2010 May; 31 Spec No 2():1-4. PubMed ID: 20521567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of urethane-dimethacrylate derivatives as alternative monomers for the restorative composite matrix.
    Barszczewska-Rybarek IM
    Dent Mater; 2014 Dec; 30(12):1336-44. PubMed ID: 25447843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins.
    Elliott JE; Lovell LG; Bowman CN
    Dent Mater; 2001 May; 17(3):221-9. PubMed ID: 11257295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate.
    Tian M; Gao Y; Liu Y; Liao Y; Hedin NE; Fong H
    Dent Mater; 2008 Feb; 24(2):235-43. PubMed ID: 17572485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A partially aromatic urethane dimethacrylate as a new substitute for Bis-GMA in restorative composites.
    Moszner N; Fischer UK; Angermann J; Rheinberger V
    Dent Mater; 2008 May; 24(5):694-9. PubMed ID: 17767952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of highly reactive mono-(meth)acrylates as reactive diluents for dimethacrylate-based dental resin systems.
    Lu H; Stansbury JW; Nie J; Berchtold KA; Bowman CN
    Biomaterials; 2005 Apr; 26(12):1329-36. PubMed ID: 15482820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thio-urethane oligomers improve the properties of light-cured resin cements.
    Bacchi A; Consani RL; Martim GC; Pfeifer CS
    Dent Mater; 2015 May; 31(5):565-74. PubMed ID: 25740124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of two Bis-GMA analogues as potential monomer diluents to improve the mechanical properties of light-cured composite resins.
    Pereira SG; Osorio R; Toledano M; Nunes TG
    Dent Mater; 2005 Sep; 21(9):823-30. PubMed ID: 15876451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction stress determinants in dimethacrylate composites.
    Gonçalves F; Pfeifer CS; Ferracane JL; Braga RR
    J Dent Res; 2008 Apr; 87(4):367-71. PubMed ID: 18362321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.