These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 16046445)
1. Role of the N-terminal domain of endoinulinase from Arthrobacter sp. S37 in regulation of enzyme catalysis. Kim KY; Rhee S; Kim SI J Biochem; 2005 Jul; 138(1):27-33. PubMed ID: 16046445 [TBL] [Abstract][Full Text] [Related]
2. Catalytic mechanism of inulinase from Arthrobacter sp. S37. Kim KY; Nascimento AS; Golubev AM; Polikarpov I; Kim CS; Kang SI; Kim SI Biochem Biophys Res Commun; 2008 Jul; 371(4):600-5. PubMed ID: 18395004 [TBL] [Abstract][Full Text] [Related]
3. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Ajami K; Abbott CA; Obradovic M; Gysbers V; Kähne T; McCaughan GW; Gorrell MD Biochemistry; 2003 Jan; 42(3):694-701. PubMed ID: 12534281 [TBL] [Abstract][Full Text] [Related]
4. Hyper-production of an isomalto-dextranase of an Arthrobacter sp. by a proteases-deficient Bacillus subtilis: sequencing, properties, and crystallization of the recombinant enzyme. Hatada Y; Hidaka Y; Nogi Y; Uchimura K; Katayama K; Li Z; Akita M; Ohta Y; Goda S; Ito H; Matsui H; Ito S; Horikoshi K Appl Microbiol Biotechnol; 2004 Oct; 65(5):583-92. PubMed ID: 15248038 [TBL] [Abstract][Full Text] [Related]
5. The N-terminal region of the starch-branching enzyme from Phaseolus vulgaris L. is essential for optimal catalysis and structural stability. Hamada S; Ito H; Ueno H; Takeda Y; Matsui H Phytochemistry; 2007 May; 68(10):1367-75. PubMed ID: 17408708 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase. Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1. Cui Z; Maruyama Y; Mikami B; Hashimoto W; Murata K J Mol Biol; 2007 Nov; 374(2):384-98. PubMed ID: 17936784 [TBL] [Abstract][Full Text] [Related]
8. Identification of an inhibitor binding site of poly(ADP-ribose) glycohydrolase. Koh DW; Patel CN; Ramsinghani S; Slama JT; Oliveira MA; Jacobson MK Biochemistry; 2003 May; 42(17):4855-63. PubMed ID: 12718526 [TBL] [Abstract][Full Text] [Related]
9. Catalytic mechanism of retaining alpha-galactosidase belonging to glycoside hydrolase family 97. Okuyama M; Kitamura M; Hondoh H; Kang MS; Mori H; Kimura A; Tanaka I; Yao M J Mol Biol; 2009 Oct; 392(5):1232-41. PubMed ID: 19646996 [TBL] [Abstract][Full Text] [Related]
10. Cloning and biochemical characterization of the fucanase FcnA: definition of a novel glycoside hydrolase family specific for sulfated fucans. Colin S; Deniaud E; Jam M; Descamps V; Chevolot Y; Kervarec N; Yvin JC; Barbeyron T; Michel G; Kloareg B Glycobiology; 2006 Nov; 16(11):1021-32. PubMed ID: 16880504 [TBL] [Abstract][Full Text] [Related]
11. Tryptophan-216 is essential for the transglycosylation activity of endo-beta-N-acetylglucosaminidase A. Fujita K; Takegawa K Biochem Biophys Res Commun; 2001 May; 283(3):680-6. PubMed ID: 11341779 [TBL] [Abstract][Full Text] [Related]
12. The central cavity from the (alpha/alpha)6 barrel structure of Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase contains two key histidine residues for reversible conversion. Lee YC; Wu HM; Chang YN; Wang WC; Hsu WH J Mol Biol; 2007 Mar; 367(3):895-908. PubMed ID: 17292397 [TBL] [Abstract][Full Text] [Related]
13. Identification of the catalytic acid base residue of arthrobacter endo-beta-N-acetylglucosaminidase by chemical rescue of an inactive mutant. Fujita K; Sato R; Toma K; Kitahara K; Suganuma T; Yamamoto K; Takegawa K J Biochem; 2007 Sep; 142(3):301-6. PubMed ID: 17567654 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic studies on N-acetylmuramic acid 6-phosphate hydrolase (MurQ): an etherase involved in peptidoglycan recycling. Hadi T; Dahl U; Mayer C; Tanner ME Biochemistry; 2008 Nov; 47(44):11547-58. PubMed ID: 18837509 [TBL] [Abstract][Full Text] [Related]
15. Mutational analysis of Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP). Tada Y; Nimura T; Sueyoshi N; Ishida A; Shigeri Y; Kameshita I Arch Biochem Biophys; 2006 Aug; 452(2):174-85. PubMed ID: 16844074 [TBL] [Abstract][Full Text] [Related]
16. Structural requirements for catalysis and dimerization of human methionine adenosyltransferase I/III. Chamberlin ME; Ubagai T; Pao VY; Pearlstein RA; Yang Chou J Arch Biochem Biophys; 2000 Jan; 373(1):56-62. PubMed ID: 10620323 [TBL] [Abstract][Full Text] [Related]
17. Structure and action of a C-C bond cleaving alpha/beta-hydrolase involved in nicotine degradation. Schleberger C; Sachelaru P; Brandsch R; Schulz GE J Mol Biol; 2007 Mar; 367(2):409-18. PubMed ID: 17275835 [TBL] [Abstract][Full Text] [Related]
18. Analysis of glycoside hydrolase family 98: catalytic machinery, mechanism and a novel putative carbohydrate binding module. Rigden DJ FEBS Lett; 2005 Oct; 579(25):5466-72. PubMed ID: 16212961 [TBL] [Abstract][Full Text] [Related]
19. Functional characterization of the non-catalytic ectodomains of the nucleotide pyrophosphatase/phosphodiesterase NPP1. Gijsbers R; Ceulemans H; Bollen M Biochem J; 2003 Apr; 371(Pt 2):321-30. PubMed ID: 12533192 [TBL] [Abstract][Full Text] [Related]