BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 16047280)

  • 1. [Drug transport in the respiratory epithelium].
    Paul HB; Welte T; Groneberg DA
    Pneumologie; 2005 Jul; 59(7):461-9. PubMed ID: 16047280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport.
    Groneberg DA; Fischer A; Chung KF; Daniel H
    Am J Respir Cell Mol Biol; 2004 Mar; 30(3):251-60. PubMed ID: 14969997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung.
    Groneberg DA; Eynott PR; Döring F; Dinh QT; Oates T; Barnes PJ; Chung KF; Daniel H; Fischer A
    Thorax; 2002 Jan; 57(1):55-60. PubMed ID: 11809991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The renal type H+/peptide symporter PEPT2: structure-affinity relationships.
    Biegel A; Knütter I; Hartrodt B; Gebauer S; Theis S; Luckner P; Kottra G; Rastetter M; Zebisch K; Thondorf I; Daniel H; Neubert K; Brandsch M
    Amino Acids; 2006 Sep; 31(2):137-56. PubMed ID: 16868651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining minimal structural features in substrates of the H(+)/peptide cotransporter PEPT2 using novel amino acid and dipeptide derivatives.
    Theis S; Hartrodt B; Kottra G; Neubert K; Daniel H
    Mol Pharmacol; 2002 Jan; 61(1):214-21. PubMed ID: 11752223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel strategies of aerosolic pharmacotherapy.
    Groneberg DA; Paul H; Welte T
    Exp Toxicol Pathol; 2006 Jun; 57 Suppl 2():49-53. PubMed ID: 16580826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of the peptide transporter PEPT2 in the lung: implications for pulmonary oligopeptide uptake.
    Groneberg DA; Nickolaus M; Springer J; Döring F; Daniel H; Fischer A
    Am J Pathol; 2001 Feb; 158(2):707-14. PubMed ID: 11159208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the mechanisms of uptake of 5-aminolevulinic acid derivatives by PEPT1 and PEPT2 transporters as a tool to improve photodynamic therapy of tumours.
    Rodriguez L; Batlle A; Di Venosa G; MacRobert AJ; Battah S; Daniel H; Casas A
    Int J Biochem Cell Biol; 2006; 38(9):1530-9. PubMed ID: 16632403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a potential substrate binding domain in the mammalian peptide transporters PEPT1 and PEPT2 using PEPT1-PEPT2 and PEPT2-PEPT1 chimeras.
    Fei YJ; Liu JC; Fujita T; Liang R; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1998 May; 246(1):39-44. PubMed ID: 9600064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression, localisation and functional implications of the transporter protein PEPT2 in the upper respiratory tract.
    Quarcoo D; Fischer TC; Heppt W; Lauenstein HD; Pilzner C; Welte T; Groneberg DA
    Respiration; 2009; 77(4):440-6. PubMed ID: 19052442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid in vitro screening for delivery of peptide-derived peptidase inhibitors as potential drug candidates via epithelial peptide transporters.
    Foltz M; Meyer A; Theis S; Demuth HU; Daniel H
    J Pharmacol Exp Ther; 2004 Aug; 310(2):695-702. PubMed ID: 15051798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrates of the human oligopeptide transporter hPEPT2.
    Zhao D; Lu K
    Biosci Trends; 2015 Aug; 9(4):207-13. PubMed ID: 26355221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function.
    Döring F; Martini C; Walter J; Daniel H
    J Membr Biol; 2002 Mar; 186(2):55-62. PubMed ID: 11944083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications.
    Döring F; Walter J; Will J; Föcking M; Boll M; Amasheh S; Clauss W; Daniel H
    J Clin Invest; 1998 Jun; 101(12):2761-7. PubMed ID: 9637710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2.
    Sugawara M; Huang W; Fei YJ; Leibach FH; Ganapathy V; Ganapathy ME
    J Pharm Sci; 2000 Jun; 89(6):781-9. PubMed ID: 10824137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of angiotensin-converting enzyme inhibitors by H+/peptide transporters revisited.
    Knütter I; Wollesky C; Kottra G; Hahn MG; Fischer W; Zebisch K; Neubert RH; Daniel H; Brandsch M
    J Pharmacol Exp Ther; 2008 Nov; 327(2):432-41. PubMed ID: 18713951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular characteristics and tissue distribution of peptide transporters].
    Han F; Le GW; Shi YH
    Sheng Li Ke Xue Jin Zhan; 2003 Jul; 34(3):222-6. PubMed ID: 14628467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular changes to the rat renal cotransporters PEPT1 and PEPT2 due to ageing.
    Alghamdi OA; King N; Andronicos NM; Jones GL; Chami B; Witting PK; Moens PDJ
    Mol Cell Biochem; 2019 Feb; 452(1-2):71-82. PubMed ID: 30019300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The PDZ domain protein PDZK1 interacts with human peptide transporter PEPT2 and enhances its transport activity.
    Noshiro R; Anzai N; Sakata T; Miyazaki H; Terada T; Shin HJ; He X; Miura D; Inui K; Kanai Y; Endou H
    Kidney Int; 2006 Jul; 70(2):275-82. PubMed ID: 16738539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls.
    Brandsch M
    Expert Opin Drug Metab Toxicol; 2009 Aug; 5(8):887-905. PubMed ID: 19519280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.