These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 16047685)

  • 1. [Finding cholinesterase in endotheliocytes: cholinesterase inhibition by organophosphorus compounds leads to endotheliocyte deformation].
    Prozorovskiĭ VB; Skopichev VG
    Eksp Klin Farmakol; 2005; 68(3):64-7. PubMed ID: 16047685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Participation of a distant cholinergic mechanism in the response of the vascular bed to intoxication by organophosphorus inhibitors of cholinesterase].
    Skopichev VG; Prozorovskiĭ VB; Medvedeva SV
    Morfologiia; 2000; 118(4):66-9. PubMed ID: 12629810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New organophosphorus compounds: cholinesterases inhibition, cytotoxicity and lethal dose.
    Sega EM; Reis AK; Olivato PR; Rodrigues A; de Carvalho JE; Castilho RF; Rittner R; Höehr NF
    Clin Chim Acta; 2008 Mar; 389(1-2):177-80. PubMed ID: 18155164
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of pyridostigmine, pralidoxime and their combination on survival and cholinesterase activity in rats exposed to the organophosphate paraoxon.
    Petroianu GA; Nurulain SM; Arafat K; Rajan S; Hasan MY
    Arch Toxicol; 2006 Nov; 80(11):777-84. PubMed ID: 16598495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The toxicity of organophosphorus compounds to mammals.
    DuBois KP
    Bull World Health Organ; 1971; 44(1-3):233-40. PubMed ID: 4328820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholinesterase inhibition: does it explain the toxicity of organophosphorus compounds?
    Maxwell DM; Brecht KM; Koplovitz I; Sweeney RE
    Arch Toxicol; 2006 Nov; 80(11):756-60. PubMed ID: 16770629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The mechanism of anticholinesterase action of acetylene organophosphorus inhibitors].
    Brestkin AP; Zhukovskiĭ IuG; Moralev SN; Rozengart VI; Sochilina EE; Iagodina OV; Vikhreva LA; Godovikov NN; Kabachnik MI
    Bioorg Khim; 1992 Aug; 18(8):1067-72. PubMed ID: 1445434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The distant effects of acetylcholine--links in the pathogenesis of poisoning by cholinesterase inhibitors].
    Skopichev VG; Prozorovskiĭ VB
    Eksp Klin Farmakol; 1999; 62(2):10-1. PubMed ID: 10340119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain cholinesterases. Differentiation of target enzymes for toxic organophosphorus compounds.
    Chemnitius JM; Haselmeyer KH; Zech R
    Biochem Pharmacol; 1983 Jun; 32(11):1693-9. PubMed ID: 6870909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The antagonism of phosphorus-containing heterocyclics with the anticholinesterase agent Phosphacol (paraoxon)].
    Garaev RS
    Eksp Klin Farmakol; 1996; 59(1):68-70. PubMed ID: 8704640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Changes of parameters of functions of respiratory and cardiovascular systems of different age rats under influence of small doses of cholinesterase inhibitor Phosphacol].
    Kuznetsov SV; Goncharov NV; Glashkina LM
    Zh Evol Biokhim Fiziol; 2005; 41(2):160-7. PubMed ID: 15909902
    [No Abstract]   [Full Text] [Related]  

  • 12. Potency of several oximes to reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon in vitro.
    Jun D; Musilova L; Kuca K; Kassa J; Bajgar J
    Chem Biol Interact; 2008 Sep; 175(1-3):421-4. PubMed ID: 18617161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of dopamine and GABA in neurotoxicity of organophosphorus cholinesterase inhibitors.
    Ho IK; Fernando JC; Sivam SP; Hoskins B
    Proc West Pharmacol Soc; 1984; 27():177-80. PubMed ID: 6494152
    [No Abstract]   [Full Text] [Related]  

  • 14. Minireview: does in-vitro testing of oximes help predict their in-vivo action after paraoxon exposure?
    Lorke DE; Petroianu GA
    J Appl Toxicol; 2009 Aug; 29(6):459-69. PubMed ID: 19603416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Condition of the eye under the effect of various organophosphate compounds in chronic animal experiments].
    Korotkova LP; Khafizov GG; Ianbukhtina FA; Sunargulov TS
    Oftalmol Zh; 1976; 31(5):379-81. PubMed ID: 1021761
    [No Abstract]   [Full Text] [Related]  

  • 16. Monitoring exposure of passerines to acephate, dicrotophos, and malathion using cholinesterase reactivation.
    Maul JD; Farris JL
    Bull Environ Contam Toxicol; 2004 Oct; 73(4):682-9. PubMed ID: 15389333
    [No Abstract]   [Full Text] [Related]  

  • 17. Weak inhibitors protect cholinesterases from strong inhibitors (paraoxon): in vitro effect of tiapride.
    Petroianu GA; Hasan MY; Arafat K; Nurulain SM; Schmitt A
    J Appl Toxicol; 2005; 25(6):562-7. PubMed ID: 16193528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak inhibitors protect cholinesterases from strong inhibitors (paraoxon): in vitro effect of ranitidine.
    Petroianu GA; Arafat K; Schmitt A; Hasan MY
    J Appl Toxicol; 2005; 25(1):60-7. PubMed ID: 15669026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro oxime-assisted reactivation of paraoxon-inhibited human acetylcholinesterase and butyrylcholinesterase.
    Musilova L; Kuca K; Jung YS; Jun D
    Clin Toxicol (Phila); 2009 Jul; 47(6):545-50. PubMed ID: 19586353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal cholinesterase activity: understanding and interpretation.
    Jokanović M; Maksimović M
    Eur J Clin Chem Clin Biochem; 1997 Jan; 35(1):11-6. PubMed ID: 9156559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.