These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16047880)

  • 1. Chlorinated pesticides (2,4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens.
    Santacruz G; Bandala ER; Torres LG
    J Environ Sci Health B; 2005; 40(4):571-83. PubMed ID: 16047880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Microbiological transformation and degradation of pesticides].
    Skriabin GK; Golovleva LA
    Izv Akad Nauk SSSR Biol; 1975; (6):805-19. PubMed ID: 1206144
    [No Abstract]   [Full Text] [Related]  

  • 3. Biodegradation behavior of agricultural pesticides in anaerobic batch reactors.
    Elefsiniotis P; Li W
    J Environ Sci Health B; 2008 Feb; 43(2):172-8. PubMed ID: 18246509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic biodegradation of organochlorine pesticides in contaminated soil - significance of temperature and availability.
    Baczynski TP; Pleissner D; Grotenhuis T
    Chemosphere; 2010 Jan; 78(1):22-8. PubMed ID: 19846197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: study for the degradation of 2,4-dichlorophenoxyacetic acid.
    Badellino C; Rodrigues CA; Bertazzoli R
    J Hazard Mater; 2006 Sep; 137(2):856-64. PubMed ID: 16707213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic or anaerobic conditions.
    Celis E; Elefsiniotis P; Singhal N
    Water Res; 2008 Jun; 42(12):3218-24. PubMed ID: 18479725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioremediation of chlorinated pesticide-contaminated soil using anaerobic sludges and surfactant addition.
    Baczynski TP; Pleissner D
    J Environ Sci Health B; 2010 Jan; 45(1):82-8. PubMed ID: 20390935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil column experiments used as a means to assess transport, sorption, and biodegradation of pesticides in groundwater.
    Magga Z; Tzovolou DN; Theodoropoulou MA; Dalkarani T; Pikios K; Tsakiroglou CD
    J Environ Sci Health B; 2008 Nov; 43(8):732-41. PubMed ID: 18941999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or Pseudomonas fluorescens free cell cultures.
    Bandala ER; Andres-Octaviano J; Pastrana P; Torres LG
    J Environ Sci Health B; 2006; 41(5):553-69. PubMed ID: 16785166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of anionic pesticides by rabbit choroid plexus in vitro.
    Pritchard JB
    J Pharmacol Exp Ther; 1980 Feb; 212(2):354-9. PubMed ID: 7351648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of oxadiazon by a soil isolated Pseudomonas fluorescens strain CG5: Implementation in an herbicide removal reactor and modelling.
    Garbi C; Casasús L; Martinez-Alvarez R; Ignacio Robla J; Martín M
    Water Res; 2006 Mar; 40(6):1217-23. PubMed ID: 16516265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms.
    Onneby K; Jonsson A; Stenström J
    Biodegradation; 2010 Feb; 21(1):21-9. PubMed ID: 19557524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.
    Ferreira-Guedes S; Mendes B; Leitão AL
    Environ Technol; 2012; 33(4-6):677-86. PubMed ID: 22629643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of methyl parathion and tetrachlorvinphos by a bacterial consortium immobilized on tezontle-packed up-flow reactor.
    Yáñez-Ocampo G; Sánchez-Salinas E; Ortiz-Hernández ML
    Biodegradation; 2011 Nov; 22(6):1203-13. PubMed ID: 21533773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pesticides in ground water beneath irrigated farmland in Nebraska, August 1978.
    Spalding RF; Junk GA; Richard JJ
    Pestic Monit J; 1980 Sep; 14(2):70-3. PubMed ID: 7232106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The microbial breakdown of pesticides.
    Cripps RE
    Soc Appl Bacteriol Symp Ser; 1971; 1():255-66. PubMed ID: 5005567
    [No Abstract]   [Full Text] [Related]  

  • 17. Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP).
    Vroumsia T; Steiman R; Seigle-Murandi F; Benoit-Guyod JL;
    Chemosphere; 2005 Sep; 60(10):1471-80. PubMed ID: 16201028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradation.
    Serbent MP; Rebelo AM; Pinheiro A; Giongo A; Tavares LBB
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5065-5078. PubMed ID: 31044311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organochlorine pesticide contamination of ground water in the city of Hyderabad.
    Shukla G; Kumar A; Bhanti M; Joseph PE; Taneja A
    Environ Int; 2006 Feb; 32(2):244-7. PubMed ID: 16183122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipation and residues of 2,4-D: -dimethylammonium in wheat and soil.
    Jiang H; Yan S; Donglan W; Xing S; Mingtao F; Xianjin L
    Bull Environ Contam Toxicol; 2010 Aug; 85(2):157-9. PubMed ID: 20640399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.