These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16048133)

  • 1. Inorganic carbon limitation and mixotrophic growth in Chlamydomonas from an acidic mining lake.
    Tittel J; Bissinger V; Gaedke U; Kamjunke N
    Protist; 2005 Jun; 156(1):63-75. PubMed ID: 16048133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions.
    Souza LD; Simioni C; Bouzon ZL; Schneider RC; Gressler P; Miotto MC; Rossi MJ; Rörig LR
    Protoplasma; 2017 May; 254(3):1385-1398. PubMed ID: 27696020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions.
    Poerschmann J; Spijkerman E; Langer U
    Microb Ecol; 2004 Jul; 48(1):78-89. PubMed ID: 15107953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus acquisition by Chlamydomonas acidophila under autotrophic and osmo-mixotrophic growth conditions.
    Spijkerman E
    J Exp Bot; 2007; 58(15-16):4195-202. PubMed ID: 18039735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High heterotrophic bacterial production in acidic, iron-rich mining lakes.
    Kamjunke N; Tittel J; Krumbeck H; Beulker C; Poerschmann J
    Microb Ecol; 2005 Apr; 49(3):425-33. PubMed ID: 16003478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MIXOTROPHIC ALGAE CONSTRAIN THE LOSS OF ORGANIC CARBON BY EXUDATION(1).
    Kamjunke N; Tittel J
    J Phycol; 2009 Aug; 45(4):807-11. PubMed ID: 27034209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What physiological acclimation supports increased growth at high CO2 conditions?
    Spijkerman E
    Physiol Plant; 2008 May; 133(1):41-8. PubMed ID: 18298410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium.
    Spijkerman E; Barua D; Gerloff-Elias A; Kern J; Gaedke U; Heckathorn SA
    Extremophiles; 2007 Jul; 11(4):551-62. PubMed ID: 17429574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility.
    Spijkerman E; Lukas M; Wacker A
    Phytochemistry; 2017 Dec; 144():43-51. PubMed ID: 28881198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light.
    Das P; Lei W; Aziz SS; Obbard JP
    Bioresour Technol; 2011 Feb; 102(4):3883-7. PubMed ID: 21183340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions.
    Langner U; Jakob T; Stehfest K; Wilhelm C
    Plant Cell Environ; 2009 Mar; 32(3):250-8. PubMed ID: 19054351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila.
    Spijkerman E; Behrend H; Fach B; Gaedke U
    Sci Total Environ; 2018 Jun; 626():1342-1349. PubMed ID: 29898541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eutrophication conditions and ecological status in typical bays of Lake Taihu in China.
    Ye C; Xu Q; Kong H; Shen Z; Yan C
    Environ Monit Assess; 2007 Dec; 135(1-3):217-25. PubMed ID: 17345009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The phototrophic community found in Lake Khilganta (an alkaline saline lake located in the southeastern Transbaikal region)].
    Kompantseva EI; Sorokin DIu; Gorlenko VM; Namsaraev BB
    Mikrobiologiia; 2005; 74(3):410-9. PubMed ID: 16119856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum.
    Clegg MR; Gaedke U; Boehrer B; Spijkerman E
    Oecologia; 2012 Jul; 169(3):609-22. PubMed ID: 22200852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High bacterivory by the smallest phytoplankton in the North Atlantic Ocean.
    Zubkov MV; Tarran GA
    Nature; 2008 Sep; 455(7210):224-6. PubMed ID: 18690208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic and biotic factors regulating dynamics of bacterioplankton in a large shallow lake.
    Kisand V; Nõges T
    FEMS Microbiol Ecol; 2004 Oct; 50(1):51-62. PubMed ID: 19712376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila.
    Gerloff-Elias A; Barua D; Mölich A; Spijkerman E
    FEMS Microbiol Ecol; 2006 Jun; 56(3):345-54. PubMed ID: 16689867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton.
    Hammes F; Meylan S; Salhi E; Köster O; Egli T; von Gunten U
    Water Res; 2007 Apr; 41(7):1447-54. PubMed ID: 17321564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The vertical distribution of phytoplankton in stratified water columns.
    Mellard JP; Yoshiyama K; Litchman E; Klausmeier CA
    J Theor Biol; 2011 Jan; 269(1):16-30. PubMed ID: 20932846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.