These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1604828)

  • 41. Early childhood development of visual texture segregation in full-term and preterm children.
    Sayeur MS; Vannasing P; Lefrançois M; Tremblay E; Lepore F; Lassonde M; McKerral M; Gallagher A
    Vision Res; 2015 Jul; 112():1-10. PubMed ID: 25976298
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Steady-state visual evoked potentials to asymmetrical contrast.
    Bobak P; Yates D; Goodwin J; Morrison R
    Curr Eye Res; 1988 Mar; 7(3):265-75. PubMed ID: 3359813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrophysiological correlates of figure-ground segregation directly reflect perceptual saliency.
    Straube S; Grimsen C; Fahle M
    Vision Res; 2010 Mar; 50(5):509-21. PubMed ID: 20045710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitivity and configuration-specificity of orientation-defined texture processing in infants and adults.
    Pei F; Pettet MW; Norcia AM
    Vision Res; 2007 Feb; 47(3):338-48. PubMed ID: 17188321
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Maturation of evoked potentials and visual preference in 6-45-day-old infants: effects of check size, visual acuity, and refractive error.
    Harter MR; Deaton FK; Odom JV
    Electroencephalogr Clin Neurophysiol; 1977 May; 42(5):595-607. PubMed ID: 67021
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visual evoked potentials to a faint light: signal propagation analyzed with peak latency and topographic mapping.
    Shimoyama I; Uemura K; Morita Y; Miyanaga F; Kuroda R; Nakamura T
    Brain Topogr; 1996; 8(3):245-7. PubMed ID: 8728412
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adaptation of evoked potentials by patterns of texture-contrast.
    MacKay DM
    Exp Brain Res; 1977 Aug; 29(2):149-53. PubMed ID: 913512
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gender-selective effects of the P300 and N400 components of the visual evoked potential.
    Steffensen SC; Ohran AJ; Shipp DN; Hales K; Stobbs SH; Fleming DE
    Vision Res; 2008 Mar; 48(7):917-25. PubMed ID: 18291436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The electrophysiological correlate of contour integration is modulated by task demands.
    Mathes B; Trenner D; Fahle M
    Brain Res; 2006 Oct; 1114(1):98-112. PubMed ID: 16945355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pattern-reversal visual evoked potentials and retinal eccentricity.
    Meredith JT; Celesia GG
    Electroencephalogr Clin Neurophysiol; 1982 Mar; 53(3):243-53. PubMed ID: 6174299
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Visual evoked potentials: methodologic problems--variations of stimulus parameters].
    Diener HC; Zimmermann C
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1985 Sep; 16(3):155-7. PubMed ID: 3933955
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Clinical relevance of phase of steady-state VEPs to P100 latency of transient VEPs.
    Tobimatsu S; Tashima-Kurita S; Nakayama-Hiromatsu M; Kato M
    Electroencephalogr Clin Neurophysiol; 1991; 80(2):89-93. PubMed ID: 1707809
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Motion-onset and pattern-reversal visual evoked potentials in diagnostics of neuroborreliosis.
    Kubová Z; Szanyi J; Langrová J; Kremlácek J; Kuba M; Honegr K
    J Clin Neurophysiol; 2006 Oct; 23(5):416-20. PubMed ID: 17016151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shades of grey; Assessing the contribution of the magno- and parvocellular systems to neural processing of the retinal input in the human visual system from the influence of neural population size and its discharge activity on the VEP.
    Marcar VL; Baselgia S; Lüthi-Eisenegger B; Jäncke L
    Brain Behav; 2018 Mar; 8(3):e00860. PubMed ID: 29541531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time information in Poggendorff visual illusion: visual evoked potentials.
    Bergamasco L; Borgarelli M; Vighetti S; Giulio LF
    Funct Neurol; 1992; 7(3):205-13. PubMed ID: 1500010
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visual evoked potentials to line- and luminance-defined triangles.
    Brodeur M; Debruille JB
    Vision Res; 2003 Feb; 43(3):299-306. PubMed ID: 12535988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dissociation of summation and peak latencies in visual processing: an MEG study on stimulus eccentricity.
    Zhou B; Bao Y; Sander T; Trahms L; Pöppel E
    Neurosci Lett; 2010 Oct; 483(2):101-4. PubMed ID: 20674677
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temporal profile of visual evoked responses to pattern-reversal stimulation analyzed with a whole-head magnetometer.
    Hashimoto T; Kashii S; Kikuchi M; Honda Y; Nagamine T; Shibasaki H
    Exp Brain Res; 1999 Apr; 125(3):375-82. PubMed ID: 10229028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transient visually evoked potentials to sinusoidal gratings in optic neuritis.
    Plant GT
    J Neurol Neurosurg Psychiatry; 1983 Dec; 46(12):1125-33. PubMed ID: 6663312
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Visual evoked potentials in rabbit's visual cortex reflect variations in orientation and intensity of lines].
    Polianskiĭ VB; Alymkulov DE; Sokolov EN; Radzievskaia MG; Ruderman GL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(6):688-99. PubMed ID: 19178071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.