These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 1604848)

  • 1. Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina.
    Chino YM; Kaas JH; Smith EL; Langston AL; Cheng H
    Vision Res; 1992 May; 32(5):789-96. PubMed ID: 1604848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex.
    Rosa MG; Schmid LM; Calford MB
    J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):589-608. PubMed ID: 7738850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical plasticity revealed by circumscribed retinal lesions or artificial scotomas.
    Dreher B; Burke W; Calford MB
    Prog Brain Res; 2001; 134():217-46. PubMed ID: 11702546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic map reorganization in cat area 17 after early monocular retinal lesions.
    Matsuura K; Zhang B; Mori T; Smith EL; Kaas JH; Chino Y
    Vis Neurosci; 2002; 19(1):85-96. PubMed ID: 12180862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult plasticity in the visual system.
    Chino YM
    Can J Physiol Pharmacol; 1995 Sep; 73(9):1323-38. PubMed ID: 8748982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus.
    Kalil RE; Spear PD; Langsetmo A
    J Neurophysiol; 1984 Sep; 52(3):514-37. PubMed ID: 6481442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated.
    Darian-Smith C; Gilbert CD
    J Neurosci; 1995 Mar; 15(3 Pt 1):1631-47. PubMed ID: 7891124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immature cortex lesions alter retinotopic maps and interhemispheric connections.
    Restrepo CE; Manger PR; Spenger C; Innocenti GM
    Ann Neurol; 2003 Jul; 54(1):51-65. PubMed ID: 12838520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity Beyond V1: Reinforcement of Motion Perception upon Binocular Central Retinal Lesions in Adulthood.
    Burnat K; Hu TT; Kossut M; Eysel UT; Arckens L
    J Neurosci; 2017 Sep; 37(37):8989-8999. PubMed ID: 28821647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions.
    Schmid LM; Rosa MG; Calford MB; Ambler JS
    Cereb Cortex; 1996; 6(3):388-405. PubMed ID: 8670666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina.
    Kaas JH; Krubitzer LA; Chino YM; Langston AL; Polley EH; Blair N
    Science; 1990 Apr; 248(4952):229-31. PubMed ID: 2326637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent changes in the expression of the MEF2 transcription factor family during topographic map reorganization in mammalian visual cortex.
    Leysen I; Van der Gucht E; Eysel UT; Huybrechts R; Vandesande F; Arckens L
    Eur J Neurosci; 2004 Aug; 20(3):769-80. PubMed ID: 15255987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone.
    Hu TT; Van den Bergh G; Thorrez L; Heylen K; Eysel UT; Arckens L
    Cereb Cortex; 2011 Dec; 21(12):2883-92. PubMed ID: 21571696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homeostatic plasticity in human extrastriate cortex following a simulated peripheral scotoma.
    Gannon MA; Long SM; Parks NA
    Exp Brain Res; 2017 Nov; 235(11):3391-3401. PubMed ID: 28821922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reorganization of visual cortical maps after focal ischemic lesions.
    Zepeda A; Vaca L; Arias C; Sengpiel F
    J Cereb Blood Flow Metab; 2003 Jul; 23(7):811-20. PubMed ID: 12843784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimizing biases in estimating the reorganization of human visual areas with BOLD retinotopic mapping.
    Binda P; Thomas JM; Boynton GM; Fine I
    J Vis; 2013 Jun; 13(7):13. PubMed ID: 23788461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sensory deafferentation on immunoreactivity of GABAergic cells and on GABA receptors in the adult cat visual cortex.
    Rosier AM; Arckens L; Demeulemeester H; Orban GA; Eysel UT; Wu YJ; Vandesande F
    J Comp Neurol; 1995 Aug; 359(3):476-89. PubMed ID: 7499542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular correlates of topographic reorganization in primary visual cortex following retinal lesions.
    Obata S; Obata J; Das A; Gilbert CD
    Cereb Cortex; 1999; 9(3):238-48. PubMed ID: 10355904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinotopic map plasticity in adult cat visual cortex is accompanied by changes in Ca2+/calmodulin-dependent protein kinase II alpha autophosphorylation.
    Van den Bergh G; Eysel UT; Vandenbussche E; Vandesande F; Arckens L
    Neuroscience; 2003; 120(1):133-42. PubMed ID: 12849747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layers.
    Calford MB; Wang C; Taglianetti V; Waleszczyk WJ; Burke W; Dreher B
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):587-602. PubMed ID: 10767137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.