BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16048483)

  • 1. Image processing strategies dedicated to visual cortical stimulators: a survey.
    Buffoni LX; Coulombe J; Sawan M
    Artif Organs; 2005 Aug; 29(8):658-64. PubMed ID: 16048483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An image processing approach for blind mobility facilitated through visual intracortical stimulation.
    Mohammadi HM; Ghafar-Zadeh E; Sawan M
    Artif Organs; 2012 Jul; 36(7):616-28. PubMed ID: 22428560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal origin of phosphenes to transcranial alternating current stimulation.
    Schutter DJ; Hortensius R
    Clin Neurophysiol; 2010 Jul; 121(7):1080-4. PubMed ID: 20188625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2005 Jun; 12(5):574-9. PubMed ID: 16051097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats.
    Lu Y; Yan Y; Chai X; Ren Q; Chen Y; Li L
    J Neural Eng; 2013 Jun; 10(3):036022. PubMed ID: 23665847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphene induction and the generation of saccadic eye movements by striate cortex.
    Tehovnik EJ; Slocum WM; Carvey CE; Schiller PH
    J Neurophysiol; 2005 Jan; 93(1):1-19. PubMed ID: 15371496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial vision for the blind. The summit may be closer than you think.
    Dobelle WH
    ASAIO J; 1994; 40(4):919-22. PubMed ID: 7858325
    [No Abstract]   [Full Text] [Related]  

  • 8. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brightness of phosphenes elicited by electrical stimulation of human visual cortex.
    Evans JR; Gordon J; Abramov I; Mladejovsky MG; Dobelle WH
    Sens Processes; 1979 Mar; 3(1):82-94. PubMed ID: 515743
    [No Abstract]   [Full Text] [Related]  

  • 10. An in-vivo paradigm for the evaluation of stimulating electrodes for use with a visual prosthesis.
    Chowdhury V; Morley JW; Coroneo MT
    ANZ J Surg; 2004 May; 74(5):372-8. PubMed ID: 15144260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for plotting the optimum positions of an array of cortical electrical phosphenes.
    Everitt BS; Rushton DN
    Biometrics; 1978 Sep; 34(3):399-410. PubMed ID: 719122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent changes in cortical excitability after prolonged visual deprivation.
    Pitskel NB; Merabet LB; Ramos-Estebanez C; Kauffman T; Pascual-Leone A
    Neuroreport; 2007 Oct; 18(16):1703-7. PubMed ID: 17921872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical stimulation of human visual cortex: the effect of stimulus parameters on phosphene threshold.
    Girvin JP; Evans JR; Dobelle WH; Mladejovsky MG; Henderson DC; Abramov I; Gordon J; Turkel J
    Sens Processes; 1979 Mar; 3(1):66-81. PubMed ID: 515742
    [No Abstract]   [Full Text] [Related]  

  • 16. Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects.
    Oswalt D; Bosking W; Sun P; Sheth SA; Niketeghad S; Salas MA; Patel U; Greenberg R; Dorn J; Pouratian N; Beauchamp M; Yoshor D
    Brain Stimul; 2021; 14(5):1356-1372. PubMed ID: 34482000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of tactile perception based on phosphene positioning using simulated prosthetic vision.
    Chai X; Zhang L; Li W; Shao F; Yang K; Ren Q
    Artif Organs; 2008 Feb; 32(2):110-5. PubMed ID: 18269352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system.
    Cha K; Horch K; Normann RA
    Ann Biomed Eng; 1992; 20(4):439-49. PubMed ID: 1510295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstimulation of visual cortex to restore vision.
    Tehovnik EJ; Slocum WM; Smirnakis SM; Tolias AS
    Prog Brain Res; 2009; 175():347-75. PubMed ID: 19660667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics.
    Bosking WH; Beauchamp MS; Yoshor D
    Annu Rev Vis Sci; 2017 Sep; 3():141-166. PubMed ID: 28753382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.