These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1604849)

  • 1. Texture segregation is processed by primary visual cortex in man and monkey. Evidence from VEP experiments.
    Lamme VA; Van Dijk BW; Spekreijse H
    Vision Res; 1992 May; 32(5):797-807. PubMed ID: 1604849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of texture segregation processing in primate visual cortex.
    Lamme VA; van Dijk BW; Spekereijse H
    Vis Neurosci; 1993; 10(5):781-90. PubMed ID: 8217932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature-specific electrophysiological correlates of texture segregation.
    Fahle M; Quenzer T; Braun C; Spang K
    Vision Res; 2003 Jan; 43(1):7-19. PubMed ID: 12505600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedforward and recurrent processing in scene segmentation: electroencephalography and functional magnetic resonance imaging.
    Scholte HS; Jolij J; Fahrenfort JJ; Lamme VA
    J Cogn Neurosci; 2008 Nov; 20(11):2097-109. PubMed ID: 18416684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Texture segregation in the human visual cortex: A functional MRI study.
    Kastner S; De Weerd P; Ungerleider LG
    J Neurophysiol; 2000 Apr; 83(4):2453-7. PubMed ID: 10758146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological correlates of texture segregation in the human visual evoked potential.
    Bach M; Meigen T
    Vision Res; 1992 Mar; 32(3):417-24. PubMed ID: 1604828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of contour from motion processing in primate visual cortex.
    Lamme VA; Van Dijk BW; Spekreijse H
    Vision Res; 1994 Mar; 34(6):721-35. PubMed ID: 8160388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of visual texture segregation during the first year of life: a high-density electrophysiological study.
    Arcand C; Tremblay E; Vannasing P; Ouimet C; Roy MS; Fallaha N; Lepore F; Lassonde M; McKerral M
    Exp Brain Res; 2007 Jun; 180(2):263-72. PubMed ID: 17265040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial resolution of EEG cortical source imaging revealed by localization of retinotopic organization in human primary visual cortex.
    Im CH; Gururajan A; Zhang N; Chen W; He B
    J Neurosci Methods; 2007 Mar; 161(1):142-54. PubMed ID: 17098289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edge detection and surface 'filling in' as shown by texture visual evoked potentials.
    Romani A; Caputo G; Callieco R; Schintone E; Cosi V
    Clin Neurophysiol; 1999 Jan; 110(1):86-91. PubMed ID: 10348325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of collinearity and orientation on texture visual evoked potentials.
    Romani A; Callieco R; Tavazzi E; Cosi V
    Clin Neurophysiol; 2003 Jun; 114(6):1021-6. PubMed ID: 12804670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity and configuration-specificity of orientation-defined texture processing in infants and adults.
    Pei F; Pettet MW; Norcia AM
    Vision Res; 2007 Feb; 47(3):338-48. PubMed ID: 17188321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey.
    Schroeder CE; Tenke CE; Givre SJ; Arezzo JC; Vaughan HG
    Vision Res; 1991; 31(7-8):1143-57. PubMed ID: 1891808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ERP evidence of visualization at early stages of visual processing.
    Page JW; Duhamel P; Crognale MA
    Brain Cogn; 2011 Mar; 75(2):141-6. PubMed ID: 21112683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Electrophysiological investigation of the texture discrimination mechanisms].
    Kharauzov AK; Shelepin IuE; Sel'chenkova TV; Noskov IaA
    Ross Fiziol Zh Im I M Sechenova; 2007 Jan; 93(1):3-13. PubMed ID: 17465269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two stages in visual texture segregation: a lesion study in the cat.
    De Weerd P; Sprague JM; Vandenbussche E; Orban GA
    J Neurosci; 1994 Mar; 14(3 Pt 1):929-48. PubMed ID: 8120635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells.
    Szulborski RG; Palmer LA
    Vision Res; 1990; 30(2):249-54. PubMed ID: 2309459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P
    Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli.
    Motter BC
    J Neurophysiol; 1993 Sep; 70(3):909-19. PubMed ID: 8229178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.