These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16049185)

  • 1. Oscillatory bursts in the optic tectum of birds represent re-entrant signals from the nucleus isthmi pars parvocellularis.
    Marín G; Mpodozis J; Sentis E; Ossandón T; Letelier JC
    J Neurosci; 2005 Jul; 25(30):7081-9. PubMed ID: 16049185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response properties of visual neurons in the turtle nucleus isthmi.
    Saha D; Morton D; Ariel M; Wessel R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Feb; 197(2):153-65. PubMed ID: 20967450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tectal microcircuit generating visual selection commands on gaze-controlling neurons.
    Kardamakis AA; Saitoh K; Grillner S
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):E1956-65. PubMed ID: 25825743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity.
    Hunter PR; Lowe AS; Thompson ID; Meyer MP
    J Neurosci; 2013 Aug; 33(35):13940-5. PubMed ID: 23986231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish.
    Heap LA; Vanwalleghem GC; Thompson AW; Favre-Bulle I; Rubinsztein-Dunlop H; Scott EK
    Front Neuroanat; 2017; 11():135. PubMed ID: 29403362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A synaptic corollary discharge signal suppresses midbrain visual processing during saccade-like locomotion.
    Ali MA; Lischka K; Preuss SJ; Trivedi CA; Bollmann JH
    Nat Commun; 2023 Nov; 14(1):7592. PubMed ID: 37996414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular recordings reveal absence of magneto sensitive units in the avian optic tectum.
    Ramírez E; Marín G; Mpodozis J; Letelier JC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Dec; 200(12):983-96. PubMed ID: 25281335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological properties of isthmic neurons in frogs revealed by in vitro and in vivo studies.
    Caudill MS; Eggebrecht AT; Gruberg ER; Wessel R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Apr; 196(4):249-62. PubMed ID: 20179943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Nonlinear Spatial Integrations on Encoding Contrasting Stimuli of Tectal Neurons.
    Huang S; Hu P; Zhao Z; Shi L
    Animals (Basel); 2024 May; 14(11):. PubMed ID: 38891623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of temperature on the proxies of visual detection of
    Babkiewicz E; Bazała M; Urban P; Maszczyk P; Markowska M; Gliwicz ZM
    Biol Open; 2020 Jul; 9(7):. PubMed ID: 32694151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of a temporal salient object benefits from visual stimulus-specific adaptation in avian midbrain inhibitory nucleus.
    Wang J; Rao X; Huang S; Wang Z; Niu X; Zhu M; Wang S; Shi L
    Integr Zool; 2024 Mar; 19(2):288-306. PubMed ID: 36893724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct neural mechanisms construct classical versus extraclassical inhibitory surrounds in an inhibitory nucleus in the midbrain attention network.
    Schryver HM; Mysore SP
    Nat Commun; 2023 Jun; 14(1):3400. PubMed ID: 37296109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual neurons recognize complex image transformations.
    Hiramoto M; Cline HT
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetically targetable near-infrared photosensitizer.
    He J; Wang Y; Missinato MA; Onuoha E; Perkins LA; Watkins SC; St Croix CM; Tsang M; Bruchez MP
    Nat Methods; 2016 Mar; 13(3):263-8. PubMed ID: 26808669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interhemispheric competition during sleep.
    Fenk LA; Riquelme JL; Laurent G
    Nature; 2023 Apr; 616(7956):312-318. PubMed ID: 36949193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual categories and concepts in the avian brain.
    Pusch R; Clark W; Rose J; Güntürkün O
    Anim Cogn; 2023 Jan; 26(1):153-173. PubMed ID: 36352174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Donut-like organization of inhibition underlies categorical neural responses in the midbrain.
    Mahajan NR; Mysore SP
    Nat Commun; 2022 Mar; 13(1):1680. PubMed ID: 35354821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A specialized reciprocal connectivity suggests a link between the mechanisms by which the superior colliculus and parabigeminal nucleus produce defensive behaviors in rodents.
    Deichler A; Carrasco D; Lopez-Jury L; Vega-Zuniga T; Márquez N; Mpodozis J; Marín GJ
    Sci Rep; 2020 Oct; 10(1):16220. PubMed ID: 33004866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of competitive selection: A canonical neural circuit framework.
    Mysore SP; Kothari NB
    Elife; 2020 May; 9():. PubMed ID: 32431293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Circuits That Mediate Selective Attention: A Comparative Perspective.
    Knudsen EI
    Trends Neurosci; 2018 Nov; 41(11):789-805. PubMed ID: 30075867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.