These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 16049326)

  • 61. New insights into epithelial-mesenchymal transition in kidney fibrosis.
    Liu Y
    J Am Soc Nephrol; 2010 Feb; 21(2):212-22. PubMed ID: 20019167
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Combining Extracellular miRNA Determination with Microfluidic 3D Cell Cultures for the Assessment of Nephrotoxicity: a Proof of Concept Study.
    Suter-Dick L; Mauch L; Ramp D; Caj M; Vormann MK; Hutter S; Lanz HL; Vriend J; Masereeuw R; Wilmer MJ
    AAPS J; 2018 Jul; 20(5):86. PubMed ID: 30039346
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dietary fructose causes tubulointerstitial injury in the normal rat kidney.
    Nakayama T; Kosugi T; Gersch M; Connor T; Sanchez-Lozada LG; Lanaspa MA; Roncal C; Perez-Pozo SE; Johnson RJ; Nakagawa T
    Am J Physiol Renal Physiol; 2010 Mar; 298(3):F712-20. PubMed ID: 20071464
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Epithelial to mesenchymal transition in the progression of tubulointerstitial fibrosis.
    Li MX; Liu BC
    Chin Med J (Engl); 2007 Nov; 120(21):1925-30. PubMed ID: 18067769
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Epithelial-mesenchymal transition and its implications for fibrosis.
    Kalluri R; Neilson EG
    J Clin Invest; 2003 Dec; 112(12):1776-84. PubMed ID: 14679171
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Epithelial-mesenchymal transition in renal fibrosis - evidence for and against.
    Fragiadaki M; Mason RM
    Int J Exp Pathol; 2011 Jun; 92(3):143-50. PubMed ID: 21554437
    [TBL] [Abstract][Full Text] [Related]  

  • 67. D-serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation.
    Okada A; Nangaku M; Jao TM; Maekawa H; Ishimono Y; Kawakami T; Inagi R
    Sci Rep; 2017 Sep; 7(1):11168. PubMed ID: 28894140
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC).
    Lamoureux F; Gastinel LN; Mestre E; Marquet P; Essig M
    J Proteomics; 2012 Jun; 75(12):3674-87. PubMed ID: 22564819
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Transforming growth factor-beta, basement membrane, and epithelial-mesenchymal transdifferentiation: implications for fibrosis in kidney disease.
    Stahl PJ; Felsen D
    Am J Pathol; 2001 Oct; 159(4):1187-92. PubMed ID: 11583944
    [No Abstract]   [Full Text] [Related]  

  • 70. Mitochondria-mediated disturbance of fatty acid metabolism in proximal tubule epithelial cells leads to renal interstitial fibrosis.
    Shen W; Jiang XX; Li YW; He Q
    Eur Rev Med Pharmacol Sci; 2018 Feb; 22(3):810-819. PubMed ID: 29461614
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Functional transepithelial transport measurements to detect nephrotoxicity in vitro using the RPTEC/TERT1 cell line.
    Secker PF; Schlichenmaier N; Beilmann M; Deschl U; Dietrich DR
    Arch Toxicol; 2019 Jul; 93(7):1965-1978. PubMed ID: 31076804
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Acute effects of FK506 and cyclosporine A on cultured human proximal tubular cells.
    Blaehr H; Andersen CB; Ladefoged J
    Eur J Pharmacol; 1993 Apr; 228(5-6):283-8. PubMed ID: 7683267
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis.
    Zeisberg M; Kalluri R
    Front Biosci; 2008 May; 13():6991-8. PubMed ID: 18508710
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Stress Response Gene Nupr1 Alleviates Cyclosporin A Nephrotoxicity In Vivo.
    Galichon P; Bataille A; Vandermeersch S; Wetzstein M; Xu-Dubois YC; Legouis D; Hertig A; Buob D; Placier S; Bigé N; Lefevre G; Jouanneau C; Martin C; Iovanna JL; Rondeau E
    J Am Soc Nephrol; 2017 Feb; 28(2):545-556. PubMed ID: 27451286
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The origin of renal fibroblasts and progression of kidney disease.
    Cook HT
    Am J Pathol; 2010 Jan; 176(1):22-4. PubMed ID: 20008128
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cyclosporine-induced nephrotoxicity in autoimmune diseases.
    Ponticelli C; Finzi AF; Ferraccioli G
    Kidney Int; 1999 May; 55(5):2075-6. PubMed ID: 10234669
    [No Abstract]   [Full Text] [Related]  

  • 77. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models.
    Van der Hauwaert C; Savary G; Buob D; Leroy X; Aubert S; Flamand V; Hennino MF; Perrais M; Lo-Guidice JM; Broly F; Cauffiez C; Glowacki F
    Toxicol Appl Pharmacol; 2014 Sep; 279(3):409-418. PubMed ID: 25036895
    [TBL] [Abstract][Full Text] [Related]  

  • 78. New Insights Into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis.
    Sheng L; Zhuang S
    Front Physiol; 2020; 11():569322. PubMed ID: 33041867
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Renal toxicity of long-term cyclosporin.
    Zachariae H
    Scand J Rheumatol; 1999; 28(2):65-8. PubMed ID: 10229133
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Monitoring and manipulating cellular crosstalk during kidney fibrosis inside a 3D in vitro co-culture.
    Nugraha B; Mohr MA; Ponti A; Emmert MY; Weibel F; Hoerstrup SP; Moll S; Certa U; Prunotto M; Pantazis P
    Sci Rep; 2017 Nov; 7(1):14490. PubMed ID: 29101326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.