BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16049347)

  • 1. Constitutive inactivation of the hKv1.5 mutant channel, H463G, in K+-free solutions at physiological pH.
    Zhang S; Eduljee C; Kwan DC; Kehl SJ; Fedida D
    Cell Biochem Biophys; 2005; 43(2):221-30. PubMed ID: 16049347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification.
    Fedida D; Zhang S; Kwan DC; Eduljee C; Kehl SJ
    Cell Biochem Biophys; 2005; 43(2):231-42. PubMed ID: 16049348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels.
    Kurata HT; Wang Z; Fedida D
    J Gen Physiol; 2004 May; 123(5):505-20. PubMed ID: 15078918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    Biophys J; 2004 Oct; 87(4):2407-18. PubMed ID: 15454439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External pore collapse as an inactivation mechanism for Kv4.3 K+ channels.
    Eghbali M; Olcese R; Zarei MM; Toro L; Stefani E
    J Membr Biol; 2002 Jul; 188(1):73-86. PubMed ID: 12172648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of a mammalian Shaker-related potassium channel, hKv1.5, by extracellular potassium and pH.
    Jäger H; Grissmer S
    FEBS Lett; 2001 Jan; 488(1-2):45-50. PubMed ID: 11163793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+ permeation and block of hERG potassium channels.
    Gang H; Zhang S
    J Gen Physiol; 2006 Jul; 128(1):55-71. PubMed ID: 16769794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kv1.5.
    Wang Z; Zhang X; Fedida D
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):575-91. PubMed ID: 10718739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential sensitivity of voltage-gated potassium channels Kv1.5 and Kv1.2 to acidic pH and molecular identification of pH sensor.
    Steidl JV; Yool AJ
    Mol Pharmacol; 1999 May; 55(5):812-20. PubMed ID: 10220559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMJ-53A accelerates slow inactivation gating of voltage-gated K+ channels in mouse neuroblastoma N2A cells.
    Chao CC; Shieh J; Kuo SC; Wu BT; Hour MJ; Leung YM
    Neuropharmacology; 2008 Jun; 54(7):1128-35. PubMed ID: 18406431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A direct demonstration of closed-state inactivation of K+ channels at low pH.
    Claydon TW; Vaid M; Rezazadeh S; Kwan DC; Kehl SJ; Fedida D
    J Gen Physiol; 2007 May; 129(5):437-55. PubMed ID: 17470663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The modulatory effect of zinc ions on voltage-gated potassium currents in cultured rat hippocampal neurons is not related to Kv1.3 channels.
    Teisseyre A; Mercik K; Mozrzymas JW
    J Physiol Pharmacol; 2007 Dec; 58(4):699-715. PubMed ID: 18195482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular determinants of the inhibition of human Kv1.5 potassium currents by external protons and Zn(2+).
    Kehl SJ; Eduljee C; Kwan DC; Zhang S; Fedida D
    J Physiol; 2002 May; 541(Pt 1):9-24. PubMed ID: 12015417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural link between inactivation and block of a K+ channel.
    Ader C; Schneider R; Hornig S; Velisetty P; Wilson EM; Lange A; Giller K; Ohmert I; Martin-Eauclaire MF; Trauner D; Becker S; Pongs O; Baldus M
    Nat Struct Mol Biol; 2008 Jun; 15(6):605-12. PubMed ID: 18488040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons.
    Prole DL; Lima PA; Marrion NV
    J Gen Physiol; 2003 Dec; 122(6):775-93. PubMed ID: 14638935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Kv1.1 channel glycosylation on C-type inactivation and simulated action potentials.
    Sutachan JJ; Watanabe I; Zhu J; Gottschalk A; Recio-Pinto E; Thornhill WB
    Brain Res; 2005 Oct; 1058(1-2):30-43. PubMed ID: 16153617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The external K+ concentration and mutations in the outer pore mouth affect the inhibition of kv1.5 current by Ni2+.
    Kwan DC; Eduljee C; Lee L; Zhang S; Fedida D; Kehl SJ
    Biophys J; 2004 Apr; 86(4):2238-50. PubMed ID: 15041663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gating charge immobilization caused by the transition between inactivated states in the Kv1.5 channel.
    Wang Z; Fedida D
    Biophys J; 2001 Nov; 81(5):2614-27. PubMed ID: 11606275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quercetin activates human Kv1.5 channels by a residue I502 in the S6 segment.
    Yang L; Ma JH; Zhang PH; Zou AR; Tu DN
    Clin Exp Pharmacol Physiol; 2009 Feb; 36(2):154-61. PubMed ID: 18986330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of mibefradil block of the human heart delayed rectifier hKv1.5.
    Perchenet L; Clément-Chomienne O
    J Pharmacol Exp Ther; 2000 Nov; 295(2):771-8. PubMed ID: 11046117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.