These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16049349)

  • 1. Spin biochemistry: magnetic 24Mg-25Mg-26Mg isotope effect in mitochondrial ADP phosphorylation.
    Buchachenko AL; Kouznetsov DA; Arkhangelsky SE; Orlova MA; Markarian AA
    Cell Biochem Biophys; 2005; 43(2):243-51. PubMed ID: 16049349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnesium isotope effects in enzymatic phosphorylation.
    Buchachenko AL; Kouznetsov DA; Breslavskaya NN; Orlova MA
    J Phys Chem B; 2008 Feb; 112(8):2548-56. PubMed ID: 18247604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Magnesium magnetic isotope effect: a key towards mechanochemistry of phosphorylating enzymes as molecular machines].
    Buchachenko AL; Kuznetsov DA
    Mol Biol (Mosk); 2006; 40(1):12-9. PubMed ID: 16523686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic field affects enzymatic ATP synthesis.
    Buchachenko AL; Kuznetsov DA
    J Am Chem Soc; 2008 Oct; 130(39):12868-9. PubMed ID: 18774801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Stable isotopes of Mg2+ as activators of the suppressed ATP-generating function of mitochondria].
    Kuznetsov DA; Arkhantel'skiĭ SE; Berdieva AG; Markarian AA; Khasigov PZ; Gatagonova TM; Ktsova SA; Orlova MA
    Biofizika; 2005; 50(1):80-5. PubMed ID: 15759506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondria free iron content to limit an isotope effect of (25)Mg (2+) in ATP synthesis: a caution.
    Svistunov AA; Napolov YK; Bukhvostov AA; Shatalov OA; Alyautdin RN; Kuznetsov DA
    Cell Biochem Biophys; 2013 Jun; 66(2):417-8. PubMed ID: 23184706
    [No Abstract]   [Full Text] [Related]  

  • 7. [The effect of magnesium pool isotopy on reactivation of mitochondrial ATP synthesis suppressed by 1-methyl-nicotine amide].
    Kuznetsov DA; Aliautdin RN; Markarian AA; Berdieva AG; Khasigov PZ; Gatagonova TM; Ktsoeva SA; Orlova MA
    Biomed Khim; 2006; 52(2):146-52. PubMed ID: 16805385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Magnetic Magnesium Isotope Accelerates ATP Hydrolysis Catalyzed by Myosin].
    Koltover VK; Labyntseva RD; Karandashev VK; Kosterin SO
    Biofizika; 2016; 61(2):239-46. PubMed ID: 27192824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic isotope effect of magnesium in phosphoglycerate kinase phosphorylation.
    Buchachenko AL; Kouznetsov DA; Orlova MA; Markarian AA
    Proc Natl Acad Sci U S A; 2005 Aug; 102(31):10793-6. PubMed ID: 16043694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Creatine kinase reaction in cardiac mitoplasts of rats. Its relation to oxidative phosphorylation].
    Kuznetsov AV; Saks VA; Kupriianov VV
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985; 8(1):7-14. PubMed ID: 4005057
    [No Abstract]   [Full Text] [Related]  

  • 11. Dependence of mitochondrial ATP synthesis on the nuclear magnetic moment of magnesium ions.
    Buchachenko AL; Kuznetsov DA; Arkhangel'sky SE; Orlova MA; Markaryan AA; Berdieva AG; Khasigov PZ
    Dokl Biochem Biophys; 2004; 396():197-9. PubMed ID: 15378926
    [No Abstract]   [Full Text] [Related]  

  • 12. Spin biochemistry: intramitochondrial nucleotide phosphorylation is a magnesium nuclear spin controlled process.
    Buchachenko AL; Kouznetsov DA; Arkhangelsky SE; Orlova MA; Markarian AA
    Mitochondrion; 2005 Feb; 5(1):67-9. PubMed ID: 16060293
    [No Abstract]   [Full Text] [Related]  

  • 13. Measurements of ATP in mammalian cells.
    Manfredi G; Yang L; Gajewski CD; Mattiazzi M
    Methods; 2002 Apr; 26(4):317-26. PubMed ID: 12054922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of adrenochrome on adenine nucleotides and mitochondrial oxidative phosphorylation in rat heart.
    Taam GM; Takeo S; Ziegelhoffer A; Singal PK; Beamish RE; Dhalla NS
    Can J Cardiol; 1986; 2(2):88-93. PubMed ID: 3635424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The efficiency of ATP synthase as a molecular machine].
    Buchachenko AL; Kuznetsov DA
    Biofizika; 2008; 53(3):451-6. PubMed ID: 18634317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diazoxide protects mitochondria from anoxic injury: implications for myopreservation.
    Ozcan C; Holmuhamedov EL; Jahangir A; Terzic A
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):298-306. PubMed ID: 11174735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-radical mechanism of enzymatic ATP synthesis: DFT calculations and experimental control.
    Buchachenko AL; Kuznetsov DA; Breslavskaya NN
    J Phys Chem B; 2010 Feb; 114(6):2287-92. PubMed ID: 20095588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study.
    Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E
    Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ATP-and ADP-binding sites in mitochondrial coupling factor F1 and their possible role in oxidative phosphorylation.
    Slater EC; Kemp A; van der Kraan I; Muller JL; Roveri OA; Verschoor GJ; Wagenvoord RJ; Wielders JP
    FEBS Lett; 1979 Jul; 103(1):7-11. PubMed ID: 467655
    [No Abstract]   [Full Text] [Related]  

  • 20. [New mechanisms of biological effects of electromagnetic fields].
    Buchachenko AL; Kuznetsov DA; Berdinskiĭ VL
    Biofizika; 2006; 51(3):545-52. PubMed ID: 16808357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.