These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16049393)

  • 1. Methylamine: a new endogenous modulator of neuron firing?
    Pirisino R; Ghelardini C; De Siena G; Malmberg P; Galeotti N; Cioni L; Banchelli G; Raimondi L
    Med Sci Monit; 2005 Aug; 11(8):RA257-61. PubMed ID: 16049393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity and expression of semicarbazide-sensitive benzylamine oxidase in a rodent model of diabetes: interactive effects with methylamine and alpha-aminoguanidine.
    Cioni L; De Siena G; Ghelardini C; Sernissi O; Alfarano C; Pirisino R; Raimondi L
    Eur J Pharmacol; 2006 Jan; 529(1-3):179-87. PubMed ID: 16325802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylamine-dependent release of nitric oxide and dopamine in the CNS modulates food intake in fasting rats.
    Raimondi L; Alfarano C; Pacini A; Livi S; Ghelardini C; DeSiena G; Pirisino R
    Br J Pharmacol; 2007 Apr; 150(8):1003-10. PubMed ID: 17339841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in atherogenesis in KKAy diabetic mice fed with high cholesterol diet.
    Yu PH; Wang M; Deng YL; Fan H; Shira-Bock L
    Diabetologia; 2002 Sep; 45(9):1255-62. PubMed ID: 12242458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein cross-linkage induced by formaldehyde derived from semicarbazide-sensitive amine oxidase-mediated deamination of methylamine.
    Gubisne-Haberle D; Hill W; Kazachkov M; Richardson JS; Yu PH
    J Pharmacol Exp Ther; 2004 Sep; 310(3):1125-32. PubMed ID: 15128865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of derivatives from semicarbazide-sensitive amine oxidase-mediated deamination of methylamine against Toxoplasma gondii after infection of differentiated 3T3-L1 cells.
    Zhu S; Li QR; Du Y; Yang X; Fan JM; Dong ZM
    Toxicol In Vitro; 2010 Apr; 24(3):809-14. PubMed ID: 20025955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spectrophotometric method for determining the oxidative deamination of methylamine by the amine oxidases.
    Lizcano JM; Unzeta M; Tipton KF
    Anal Biochem; 2000 Nov; 286(1):75-9. PubMed ID: 11038276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Endogenous formaldehyde and cardiovascular diseases].
    Zhang FW; Du JB; Tang CS
    Sheng Li Ke Xue Jin Zhan; 2010 Feb; 41(1):17-21. PubMed ID: 21417009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylamine, but not ammonia, is hypophagic in mouse by interaction with brain Kv1.6 channel subtype.
    Pirisino R; Ghelardini C; Pacini A; Galeotti N; Raimondi L
    Br J Pharmacol; 2004 May; 142(2):381-9. PubMed ID: 15100162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formaldehyde produced endogenously via deamination of methylamine. A potential risk factor for initiation of endothelial injury.
    Yu PH; Zuo DM
    Atherosclerosis; 1996 Feb; 120(1-2):189-97. PubMed ID: 8645360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for in vivo scavenging by aminoguanidine of formaldehyde produced via semicarbazide-sensitive amine oxidase-mediated deamination.
    Kazachkov M; Chen K; Babiy S; Yu PH
    J Pharmacol Exp Ther; 2007 Sep; 322(3):1201-7. PubMed ID: 17596537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment of methylamine clearance in uremic patients and its nephropathological implications.
    Yu PH; Dyck RF
    Clin Nephrol; 1998 May; 49(5):299-302. PubMed ID: 9617493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deamination of methylamine and aminoacetone increases aldehydes and oxidative stress in rats.
    Deng Y; Boomsma F; Yu PH
    Life Sci; 1998; 63(23):2049-58. PubMed ID: 9839528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deamination of methylamine and angiopathy; toxicity of formaldehyde, oxidative stress and relevance to protein glycoxidation in diabetes.
    Yu PH
    J Neural Transm Suppl; 1998; 52():201-16. PubMed ID: 9564620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous substrates of the semicarbazide-sensitive amine oxidase increased nitric oxide production in rat white adipocytes.
    Fracassini L; Alfarano C; Romagnani B; Pirisino R; Raimondi L
    Inflamm Res; 2008; 57 Suppl 1():S53-4. PubMed ID: 18345492
    [No Abstract]   [Full Text] [Related]  

  • 16. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-inflammatory effects of inhibiting the amine oxidase activity of semicarbazide-sensitive amine oxidase.
    Salter-Cid LM; Wang E; O'Rourke AM; Miller A; Gao H; Huang L; Garcia A; Linnik MD
    J Pharmacol Exp Ther; 2005 Nov; 315(2):553-62. PubMed ID: 16081681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose handling in streptozotocin-induced diabetic rats is improved by tyramine but not by the amine oxidase inhibitor semicarbazide.
    Visentin V; Bour S; Boucher J; Prévot D; Valet P; Ordener C; Parini A; Carpéné C
    Eur J Pharmacol; 2005 Oct; 522(1-3):139-46. PubMed ID: 16202994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylamine interaction with proteins of photosystem II: a comparison with biogenic polyamines.
    Hamdani S; Tajmir-Riahi HA; Carpentier R
    J Photochem Photobiol B; 2009 Sep; 96(3):201-6. PubMed ID: 19665901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traumatic injury of the spinal cord and nitric oxide.
    Marsala J; Orendácová J; Lukácová N; Vanický I
    Prog Brain Res; 2007; 161():171-83. PubMed ID: 17618976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.