BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16049713)

  • 1. Methods and milliliter scale devices for high-throughput bioprocess design.
    Weuster-Botz D; Puskeiler R; Kusterer A; Kaufmann K; John GT; Arnold M
    Bioprocess Biosyst Eng; 2005 Nov; 28(2):109-19. PubMed ID: 16049713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms.
    Hortsch R; Stratmann A; Weuster-Botz D
    Biotechnol Bioeng; 2010 Jun; 106(3):443-51. PubMed ID: 20198653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD).
    Puskeiler R; Kaufmann K; Weuster-Botz D
    Biotechnol Bioeng; 2005 Mar; 89(5):512-23. PubMed ID: 15669089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli.
    Puskeiler R; Kusterer A; John GT; Weuster-Botz D
    Biotechnol Appl Biochem; 2005 Dec; 42(Pt 3):227-35. PubMed ID: 15853771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automated single-use stirred-tank bioreactors for parallel microbial cultivations.
    Kusterer A; Krause C; Kaufmann K; Arnold M; Weuster-Botz D
    Bioprocess Biosyst Eng; 2008 Apr; 31(3):207-15. PubMed ID: 18193293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.
    Schmideder A; Severin TS; Cremer JH; Weuster-Botz D
    J Biotechnol; 2015 Sep; 210():19-24. PubMed ID: 26116137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power consumption and maximum energy dissipation in a milliliter-scale bioreactor.
    Hortsch R; Weuster-Botz D
    Biotechnol Prog; 2010; 26(2):595-9. PubMed ID: 19941326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Milliliter-scale stirred tank reactors for the cultivation of microorganisms.
    Hortsch R; Weuster-Botz D
    Adv Appl Microbiol; 2010; 73():61-82. PubMed ID: 20800759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated multi-scale cascade of parallel stirred-tank bioreactors for fast protein expression studies.
    Von den Eichen N; Bromig L; Sidarava V; Marienberg H; Weuster-Botz D
    J Biotechnol; 2021 May; 332():103-113. PubMed ID: 33845064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new microfluidic concept for parallel operated milliliter-scale stirred tank bioreactors.
    Gebhardt G; Hortsch R; Kaufmann K; Arnold M; Weuster-Botz D
    Biotechnol Prog; 2011; 27(3):684-90. PubMed ID: 21523927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and recombinant protein expression with Escherichia coli in different batch cultivation media.
    Hortsch R; Weuster-Botz D
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):69-76. PubMed ID: 21181153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors.
    Knoll A; Bartsch S; Husemann B; Engel P; Schroer K; Ribeiro B; Stöckmann C; Seletzky J; Büchs J
    J Biotechnol; 2007 Oct; 132(2):167-79. PubMed ID: 17681630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. kLa of stirred tank bioreactors revisited.
    Schaepe S; Kuprijanov A; Sieblist C; Jenzsch M; Simutis R; Lübbert A
    J Biotechnol; 2013 Dec; 168(4):576-83. PubMed ID: 24021302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli.
    Schmideder A; Cremer JH; Weuster-Botz D
    Biotechnol Prog; 2016 Nov; 32(6):1426-1435. PubMed ID: 27604066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process performance of parallel bioreactors for batch cultivation of Streptomyces tendae.
    Hortsch R; Krispin H; Weuster-Botz D
    Bioprocess Biosyst Eng; 2011 Mar; 34(3):297-304. PubMed ID: 20931236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up.
    Gill NK; Appleton M; Baganz F; Lye GJ
    Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control.
    Lee HL; Boccazzi P; Ram RJ; Sinskey AJ
    Lab Chip; 2006 Sep; 6(9):1229-35. PubMed ID: 16929403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel reactor systems for bioprocess development.
    Weuster-Botz D
    Adv Biochem Eng Biotechnol; 2005; 92():125-43. PubMed ID: 15791935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twenty-four-well plate miniature bioreactor high-throughput system: assessment for microbial cultivations.
    Isett K; George H; Herber W; Amanullah A
    Biotechnol Bioeng; 2007 Dec; 98(5):1017-28. PubMed ID: 17486656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and feasibility of a miniaturized stirred tank bioreactor to perform E. coli high cell density fed-batch fermentations.
    Ali S; Perez-Pardo MA; Aucamp JP; Craig A; Bracewell DG; Baganz F
    Biotechnol Prog; 2012; 28(1):66-75. PubMed ID: 21954170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.