These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 16049772)
1. Facilitated water transport in cyanobacterium Synechococcus sp. PCC 7942 studied by phycobilisome-sensitized chlorophyll a fluorescence. Stamatakis K; Nectarios L; Papageorgiou GC Photosynth Res; 2005 Jun; 84(1-3):181-5. PubMed ID: 16049772 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence induction in the phycobilisome-containing cyanobacterium Synechococcus sp PCC 7942: analysis of the slow fluorescence transient. Stamatakis K; Tsimilli-Michael M; Papageorgiou GC Biochim Biophys Acta; 2007 Jun; 1767(6):766-72. PubMed ID: 17448439 [TBL] [Abstract][Full Text] [Related]
3. Sodium chloride-induced volume changes of freshwater cyanobacterium Synechococcus sp. PCC 7942 cells can be probed by chlorophyll a fluorescence. Stamatakis K; Ladas NP; Alygizaki-Zorba A; Papageorgiou GC Arch Biochem Biophys; 1999 Oct; 370(2):240-9. PubMed ID: 10510283 [TBL] [Abstract][Full Text] [Related]
4. The osmolality of the cell suspension regulates phycobilisome-to-photosystem I excitation transfers in cyanobacteria. Stamatakis K; Papageorgiou GC Biochim Biophys Acta; 2001 Nov; 1506(3):172-81. PubMed ID: 11779550 [TBL] [Abstract][Full Text] [Related]
5. Effects of exogenous β-carotene, a chemical scavenger of singlet oxygen, on the millisecond rise of chlorophyll a fluorescence of cyanobacterium Synechococcus sp. PCC 7942. Stamatakis K; Papageorgiou GC; Govindjee Photosynth Res; 2016 Dec; 130(1-3):317-324. PubMed ID: 27034066 [TBL] [Abstract][Full Text] [Related]
6. ΔpH-dependent non-photochemical quenching (qE) of excited chlorophylls in the photosystem II core complex of the freshwater cyanobacterium Synechococcus sp PCC 7942. Stamatakis K; Papageorgiou GC Plant Physiol Biochem; 2014 Aug; 81():184-9. PubMed ID: 24793104 [TBL] [Abstract][Full Text] [Related]
7. Differences in energy transfer of a cyanobacterium, Synechococcus sp. PCC 7002, grown in different cultivation media. Niki K; Aikawa S; Yokono M; Kondo A; Akimoto S Photosynth Res; 2015 Aug; 125(1-2):201-10. PubMed ID: 25577255 [TBL] [Abstract][Full Text] [Related]
8. Significant energy transfer from CpcG2-phycobilisomes to photosystem I in the cyanobacterium Synechococcus sp. PCC 7002 in the absence of ApcD-dependent state transitions. Deng G; Liu F; Liu X; Zhao J FEBS Lett; 2012 Jul; 586(16):2342-5. PubMed ID: 22659186 [TBL] [Abstract][Full Text] [Related]
9. Prolonged incubation with low concentrations of mercury alters energy transfer and chlorophyll (Chl) a protein complexes in Synechococcus 6301: changes in Chl a absorption and emission characteristics and loss of the F695 emission band. Murthy SD; Mohanty N; Mohanty P Biometals; 1995 Jul; 8(3):237-42. PubMed ID: 7647520 [TBL] [Abstract][Full Text] [Related]
10. State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp. PCC 7002. Bruce D; Brimble S; Bryant DA Biochim Biophys Acta; 1989 Apr; 974(1):66-73. PubMed ID: 2493811 [TBL] [Abstract][Full Text] [Related]
11. Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Shen G; Canniffe DP; Ho MY; Kurashov V; van der Est A; Golbeck JH; Bryant DA Photosynth Res; 2019 Apr; 140(1):77-92. PubMed ID: 30607859 [TBL] [Abstract][Full Text] [Related]
12. Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies. Akimoto S; Shinoda T; Chen M; Allakhverdiev SI; Tomo T Photosynth Res; 2015 Aug; 125(1-2):115-22. PubMed ID: 25648637 [TBL] [Abstract][Full Text] [Related]
14. Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. Ho MY; Niedzwiedzki DM; MacGregor-Chatwin C; Gerstenecker G; Hunter CN; Blankenship RE; Bryant DA Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148064. PubMed ID: 31421078 [TBL] [Abstract][Full Text] [Related]
15. Modified in situ antimicrobial susceptibility testing method based on cyanobacteria chlorophyll a fluorescence. Heliopoulos NS; Galeou A; Papageorgiou SK; Favvas EP; Katsaros FK; Stamatakis K J Microbiol Methods; 2016 Feb; 121():1-4. PubMed ID: 26666516 [TBL] [Abstract][Full Text] [Related]
16. Far-red light allophycocyanin subunits play a role in chlorophyll d accumulation in far-red light. Bryant DA; Shen G; Turner GM; Soulier N; Laremore TN; Ho MY Photosynth Res; 2020 Jan; 143(1):81-95. PubMed ID: 31760552 [TBL] [Abstract][Full Text] [Related]
17. Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f. Majumder EL; Wolf BM; Liu H; Berg RH; Timlin JA; Chen M; Blankenship RE Photosynth Res; 2017 Nov; 134(2):183-192. PubMed ID: 28895022 [TBL] [Abstract][Full Text] [Related]
18. Diversity in photosynthetic electron transport under [CO Shimakawa G; Akimoto S; Ueno Y; Wada A; Shaku K; Takahashi Y; Miyake C Photosynth Res; 2016 Dec; 130(1-3):293-305. PubMed ID: 27026083 [TBL] [Abstract][Full Text] [Related]
19. Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes. Calzadilla PI; Muzzopappa F; Sétif P; Kirilovsky D Biochim Biophys Acta Bioenerg; 2019 Jun; 1860(6):488-498. PubMed ID: 31029593 [TBL] [Abstract][Full Text] [Related]
20. Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy. Petrásek Z; Schmitt FJ; Theiss C; Huyer J; Chen M; Larkum A; Eichler HJ; Kemnitz K; Eckert HJ Photochem Photobiol Sci; 2005 Dec; 4(12):1016-22. PubMed ID: 16307116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]