These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1604980)

  • 1. The effect of crossed olivo-cochlear bundle stimulation on acoustic trauma.
    Takeyama M; Kusakari J; Nishikawa N; Wada T
    Acta Otolaryngol; 1992; 112(2):205-9. PubMed ID: 1604980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. II. Dependence on the level of temporary threshold shifts.
    Rajan R
    J Neurophysiol; 1988 Aug; 60(2):569-79. PubMed ID: 3171642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters.
    Rajan R
    J Neurophysiol; 1988 Aug; 60(2):549-68. PubMed ID: 3171641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of efferent-mediated protection against acoustic overexposure with long maintenance under barbiturate anaesthesia.
    Rajan R
    Audiol Neurootol; 1996; 1(6):339-58. PubMed ID: 9390814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem.
    Michler SA; Illing RB
    J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of periodic rest on hearing loss and cochlear damage following exposure to noise.
    Clark WW; Bohne BA; Boettcher FA
    J Acoust Soc Am; 1987 Oct; 82(4):1253-64. PubMed ID: 3680782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of periodic rest on physiological measures of auditory sensitivity following exposure to noise.
    Sinex DG; Clark WW; Bohne BA
    J Acoust Soc Am; 1987 Oct; 82(4):1265-73. PubMed ID: 3680783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection against noise trauma by pre-exposure to a low level acoustic stimulus.
    Canlon B; Borg E; Flock A
    Hear Res; 1988 Jul; 34(2):197-200. PubMed ID: 3170362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of endocochlear potential suppression upon susceptibility to acoustic trauma.
    Kanno H; Ohtani I; Hara A; Kusakari J
    Acta Otolaryngol; 1993 Jan; 113(1):26-30. PubMed ID: 8442418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-linear aspects of outer hair cell transduction and the temporary threshold shifts after acoustic trauma.
    Patuzzi R
    Audiol Neurootol; 2002; 7(1):17-20. PubMed ID: 11914520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The protective effect of the sympathetic nervous system against acoustic trauma.
    Wada T; Takahashi K; Ito Z; Hara A; Takahashi H; Kasakari J
    Auris Nasus Larynx; 1999 Oct; 26(4):375-82. PubMed ID: 10530733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Otoacoustic emissions and medial olivocochlear suppression during auditory recovery from acoustic trauma in humans.
    Veuillet E; Martin V; Suc B; Vesson JF; Morgon A; Collet L
    Acta Otolaryngol; 2001 Jan; 121(2):278-83. PubMed ID: 11349796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of moderate-intensity noise on the compound action potential evoked by tone bursts in the guinea pig, Cavia porcellus.
    Walger M; Schmidt U; von Wedel H
    Hear Res; 1985; 19(2):143-9. PubMed ID: 4055533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Masked cochlear whole-nerve response intensity functions altered by electrical stimulation of the crossed olivocochlear bundle.
    Dolan DF; Nuttall AL
    J Acoust Soc Am; 1988 Mar; 83(3):1081-6. PubMed ID: 3356813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear toughening, protection, and potentiation of noise-induced trauma by non-Gaussian noise.
    Hamernik RP; Qiu W; Davis B
    J Acoust Soc Am; 2003 Feb; 113(2):969-76. PubMed ID: 12597190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crossed cochlear influences on monaural temporary threshold shifts.
    Rajan R; Johnstone BM
    Hear Res; 1983 Mar; 9(3):279-94. PubMed ID: 6841284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of efferents alters the cochlear microphonic and the sound-induced resistance changes measured in scale media of the guinea pig.
    Mountain DC; Geisler CD; Hubbard AE
    Hear Res; 1980 Oct; 3(3):231-40. PubMed ID: 7440426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tonic activity of the crossed olivocochlear bundle in guinea pigs with idiopathic losses in auditory sensitivity.
    Rajan R
    Hear Res; 1989 Jun; 39(3):299-308. PubMed ID: 2753834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms involved in acoustic trauma: cochlear microphonic data.
    Legouix JP
    Rev Laryngol Otol Rhinol (Bord); 1984; 105(2 Suppl):193-8. PubMed ID: 6463441
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.