BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16049908)

  • 1. Combining SPECT medical imaging and computational fluid dynamics for analyzing blood and dialysate flow in hemodialyzers.
    Eloot S; D'Asseler Y; De Bondt P; Verdonck R
    Int J Artif Organs; 2005 Jul; 28(7):739-49. PubMed ID: 16049908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique.
    Ronco C; Brendolan A; Crepaldi C; Rodighiero M; Scabardi M
    J Am Soc Nephrol; 2002 Jan; 13 Suppl 1():S53-61. PubMed ID: 11792763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of novel manufacturing technology on blood and dialysate flow distribution in a new low flux "alpha Polysulfone" hemodialyzer.
    Gastaldon F; Brendolan A; Crepaldi C; Frisone P; Zamboni S; d'Intini V; Poulin S; Hector R; Granziero A; Martins K; Gellert R; Inguaggiato P; Ronco C
    Int J Artif Organs; 2003 Feb; 26(2):105-12. PubMed ID: 12653343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow distribution analysis by helical scanning in polysulfone hemodialyzers: effects of fiber structure and design on flow patterns and solute clearances.
    Ronco C; Levin N; Brendolan A; Nalesso F; Cruz D; Ocampo C; Kuang D; Bonello M; De Cal M; Corradi V; Ricci Z
    Hemodial Int; 2006 Oct; 10(4):380-8. PubMed ID: 17014516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational flow modeling in hollow-fiber dialyzers.
    Eloot S; De Wachter D; Van Tricht I; Verdonck P
    Artif Organs; 2002 Jul; 26(7):590-9. PubMed ID: 12081517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of spacer yarns on the dialysate flow distribution of hemodialyzers: a magnetic resonance imaging study.
    Poh CK; Hardy PA; Liao Z; Huang Z; Clark WR; Gao D
    ASAIO J; 2003; 49(4):440-8. PubMed ID: 12918588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid mechanics and crossfiltration in hollow-fiber hemodialyzers.
    Ronco C
    Contrib Nephrol; 2007; 158():34-49. PubMed ID: 17684341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusive clearance of small and middle-sized molecules in combined dialyzer flow configurations.
    Eloot S; De Vos JY; Hombrouckx R; Verdonck P
    Int J Artif Organs; 2004 Mar; 27(3):205-13. PubMed ID: 15112886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances.
    Eloot S; de Vos JY; de Vos F; Hombrouckx R; Verdonck P
    Hemodial Int; 2005 Oct; 9(4):399-408. PubMed ID: 16219061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method to evaluate the local clearance at different annular rings inside hemodialyzers.
    Huang Z; Klein E; Li B; Poh C; Liao Z; Clark WR; Gao D
    ASAIO J; 2003; 49(6):692-7. PubMed ID: 14655736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dialysate flow distribution in hollow fiber hemodialyzers with different dialysate pathway configurations.
    Ronco C; Brendolan A; Crepaldi C; Rodighiero M; Everard P; Ballestri M; Cappelli G; Spittle M; La Greca G
    Int J Artif Organs; 2000 Sep; 23(9):601-9. PubMed ID: 11059882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of flow baffles on the dialysate flow distribution of hollow-fiber hemodialyzers: a nonintrusive experimental study using MRI.
    Poh CK; Hardy PA; Liao Z; Huang Z; Clark WR; Gao D
    J Biomech Eng; 2003 Aug; 125(4):481-9. PubMed ID: 12968572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers.
    Mandolfo S; Malberti F; Imbasciati E; Cogliati P; Gauly A
    Int J Artif Organs; 2003 Feb; 26(2):113-20. PubMed ID: 12653344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise Quantitative Assessment of the Clinical Performances of Two High-Flux Polysulfone Hemodialyzers in Hemodialysis: Validation of a Blood-Based Simple Kinetic Model Versus Direct Dialysis Quantification.
    Lim PS; Lin Y; Chen M; Xu X; Shi Y; Bowry S; Canaud B
    Artif Organs; 2018 May; 42(5):E55-E66. PubMed ID: 29193165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional dialysate flow analysis in a hollow-fiber dialyzer by perfusion computed tomography.
    Kim JC; Kim JH; Kim HC; Kim KG; Lee JC; Kang E; Kim HC; Min BG; Ronco C
    Int J Artif Organs; 2008 Jun; 31(6):553-60. PubMed ID: 18609508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.
    Leypoldt JK; Kamerath CD; Gilson JF; Friederichs G
    ASAIO J; 2006; 52(4):404-9. PubMed ID: 16883120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow distributions in hollow fiber hemodialyzers using magnetic resonance Fourier velocity imaging.
    Zhang J; Parker DL; Leypoldt JK
    ASAIO J; 1995; 41(3):M678-82. PubMed ID: 8573891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The Hemodialysis (HEMO) Study.
    Leypoldt JK; Cheung AK; Agodoa LY; Daugirdas JT; Greene T; Keshaviah PR
    Kidney Int; 1997 Jun; 51(6):2013-7. PubMed ID: 9186896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study.
    Azar AT
    Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical model of calcium exchange during haemodialysis using a citrate containing dialysate.
    Aniort J; Chupin L; Cîndea N
    Math Med Biol; 2018 Mar; 35(suppl_1):87-120. PubMed ID: 29059342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.