BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16049908)

  • 21. Relationship between effective ionic dialysance and in vivo urea clearance during hemodialysis.
    Lindsay RM; Bene B; Goux N; Heidenheim AP; Landgren C; Sternby J
    Am J Kidney Dis; 2001 Sep; 38(3):565-74. PubMed ID: 11532690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro and in vivo evaluation of a new dialyzer.
    Külz M; Nederlof B; Schneider H
    Nephrol Dial Transplant; 2002 Aug; 17(8):1475-9. PubMed ID: 12147797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
    Bhavsar SS; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Nov; 35(11):1095-102. PubMed ID: 21973082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. (99m)Tc-DTPA dynamic SPECT and CT volumetry for measuring split renal function in live kidney donors.
    Miyazaki C; Harada H; Shuke N; Okizaki A; Miura M; Hirano T
    Ann Nucl Med; 2010 Apr; 24(3):189-95. PubMed ID: 20213340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional simulation of mass transfer in artificial kidneys.
    Ding W; Li W; Sun S; Zhou X; Hardy PA; Ahmad S; Gao D
    Artif Organs; 2015 Jun; 39(6):E79-89. PubMed ID: 25739806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of fiber structure on dialysate flow profile and hollow-fiber hemodialyzer reliability: CT perfusion study.
    Kim JC; Kim JH; Kim HC; Kang E; Kim KG; Kim HC; Min BG; Ronco C
    Int J Artif Organs; 2008 Nov; 31(11):944-50. PubMed ID: 19089796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radionuclide method for evaluating the performance of hemodialysis in vivo.
    Bihl GR; Bird NJ; Peters C; Bradley JR; Peters AM
    Kidney Int; 2005 Feb; 67(2):721-31. PubMed ID: 15673322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hemodialysis blood access flow rates can be estimated accurately from on-line dialysate urea measurements and the knowledge of effective dialyzer urea clearance.
    Lindsay RM; Sternby J; Olde B; Persson R; Thatcher ME; Sargent K
    Clin J Am Soc Nephrol; 2006 Sep; 1(5):960-4. PubMed ID: 17699313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dialysate pressure isobars in a hollow-fiber dialyzer determined from magnetic resonance imaging and numerical simulation of dialysate flow.
    Osuga T; Obata T; Ikehira H; Tanada S; Sasaki Y; Naito H
    Artif Organs; 1998 Oct; 22(10):907-9. PubMed ID: 9790092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation.
    Craven BA; Aycock KI; Manning KB
    Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of the dialysate flow rate on hollow fiber hemodialyzer performance.
    Allen R; Frost TH; Hoenich NA
    Artif Organs; 1995 Nov; 19(11):1176-80. PubMed ID: 8579530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving hollow fiber dialyzer efficiency with a recirculating dialysate system. I: Theory and applicability.
    Prado M; Roa LM; Palma A; Milán JA
    Ann Biomed Eng; 2005 May; 33(5):642-55. PubMed ID: 15981864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of dialyzer jacket structure and hollow-fiber dialysis membranes to achieve high dialysis performance.
    Hirano A; Yamamoto K; Matsuda M; Ogawa T; Yakushiji T; Miyasaka T; Sakai K
    Ther Apher Dial; 2011 Feb; 15(1):66-74. PubMed ID: 21272255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal: computational modeling.
    Kim JC; Cruz D; Garzotto F; Kaushik M; Teixeria C; Baldwin M; Baldwin I; Nalesso F; Kim JH; Kang E; Kim HC; Ronco C
    Blood Purif; 2013; 35(1-3):106-11. PubMed ID: 23343554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proton magnetic resonance imaging of flow motion of heavy water injected into a hollow fiber dialyzer filled with saline.
    Osuga T; Obata T; Ikehira H
    Magn Reson Imaging; 2004 Apr; 22(3):413-6. PubMed ID: 15062937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative study between flow visualization and computational fluid dynamic analysis for the sun medical centrifugal blood pump.
    Yamane T; Miyamoto Y; Tajima K; Yamazaki K
    Artif Organs; 2004 May; 28(5):458-66. PubMed ID: 15113340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use.
    Ouseph R; Ward RA
    Am J Kidney Dis; 2001 Feb; 37(2):316-20. PubMed ID: 11157372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pO2 and pCO2 increment in post-dialyzer blood: the role of dialysate.
    Sombolos KI; Bamichas GI; Christidou FN; Gionanlis LD; Karagianni AC; Anagnostopoulos TC; Natse TA
    Artif Organs; 2005 Nov; 29(11):892-8. PubMed ID: 16266303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of a reduced inner diameter of hollow fibers in hemodialyzers.
    Ronco C; Brendolan A; Lupi A; Metry G; Levin NW
    Kidney Int; 2000 Aug; 58(2):809-17. PubMed ID: 10916106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.