BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16049908)

  • 41. Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend.
    Glor FP; Westenberg JJ; Vierendeels J; Danilouchkine M; Verdonck P
    Artif Organs; 2002 Jul; 26(7):622-35. PubMed ID: 12081521
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry.
    Kaesler A; Schlanstein PC; Hesselmann F; Büsen M; Klaas M; Roggenkamp D; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2017 Jun; 41(6):529-538. PubMed ID: 27925231
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimisation of solute transport in dialysers using a three-dimensional finite volume model.
    Eloot S; Vierendeels J; Verdonck P
    Comput Methods Biomech Biomed Engin; 2006 Dec; 9(6):363-70. PubMed ID: 17145670
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Validation of computational fluid dynamics in CT-based airway models with SPECT/CT.
    De Backer JW; Vos WG; Vinchurkar SC; Claes R; Drollmann A; Wulfrank D; Parizel PM; Germonpré P; De Backer W
    Radiology; 2010 Dec; 257(3):854-62. PubMed ID: 21084417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of volume-of-fluid method to analyze the viscosity effect on the spine formation of bloodstains.
    Park CS; Ihm CH; Cho NS; Chung NE
    J Forensic Sci; 2014 Nov; 59(6):1552-8. PubMed ID: 24712890
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of spacing filaments external to hollow fibers on dialysate flow distribution and dialyzer performance.
    Ronco C; Scabardi M; Goldoni M; Brendolan A; Crepaldi C; La Greca G
    Int J Artif Organs; 1997 May; 20(5):261-6. PubMed ID: 9209926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preliminary study of hemodynamics in human carotid bifurcation by computational fluid dynamics combined with magnetic resonance angiography.
    Xue Y; Gao P; Lin Y; Dai C
    Acta Radiol; 2007 Sep; 48(7):788-97. PubMed ID: 17729012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimizing sodium balance in hemodialysis.
    Sancipriano GP; Negro A; Amateis C; Calitri V; Cantone F; Deabate MC; Della Casa M; Fidelio T; Iacono G; Licata C; Serra A; Susa I
    Blood Purif; 1996; 14(2):115-27. PubMed ID: 8785027
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics.
    Saber NR; Wood NB; Gosman AD; Merrifield RD; Yang GZ; Charrier CL; Gatehouse PD; Firmin DN
    Ann Biomed Eng; 2003 Jan; 31(1):42-52. PubMed ID: 12572655
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Database of normal human cerebral blood flow measured by SPECT: I. Comparison between I-123-IMP, Tc-99m-HMPAO, and Tc-99m-ECD as referred with O-15 labeled water PET and voxel-based morphometry.
    Ito H; Inoue K; Goto R; Kinomura S; Taki Y; Okada K; Sato K; Sato T; Kanno I; Fukuda H
    Ann Nucl Med; 2006 Feb; 20(2):131-8. PubMed ID: 16615422
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Factors which influence phosphorus removal in hemodialysis].
    Gallar P; Ortiz M; Ortega O; Rodríguez I; Seijas V; Carreño A; Oliet A; Vigil A
    Nefrologia; 2007; 27(1):46-52. PubMed ID: 17402879
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of small degree of nonuniformity in dialysate flow in hollow-fiber dialyzer using proton magnetic resonance imaging.
    Osuga T; Obata T; Ikehira H
    Magn Reson Imaging; 2004 Apr; 22(3):417-20. PubMed ID: 15062938
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hemodialyzer: from macro-design to membrane nanostructure; the case of the FX-class of hemodialyzers.
    Ronco C; Bowry SK; Brendolan A; Crepaldi C; Soffiati G; Fortunato A; Bordoni V; Granziero A; Torsello G; La Greca G
    Kidney Int Suppl; 2002 May; (80):126-42. PubMed ID: 11982827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Dialysate and biocompatibility in hemodialysis].
    Berland Y
    Nephrologie; 1998; 19(6):329-34. PubMed ID: 9836194
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Measurements of blood velocities using duplex sonography in carotid artery stents: analysis of reliability in an in-vitro model and computational fluid dynamics (CFD)].
    Schönwald UG; Jorczyk U; Kipfmüller B
    Ultraschall Med; 2011 Jan; 32 Suppl 1():S89-94. PubMed ID: 19941251
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A model to predict optimal dialysate flow.
    Alayoud A; Benyahia M; Montassir D; Hamzi A; Zajjari Y; Bahadi A; El Kabbaj D; Maoujoud O; Aatif T; Hassani K; Oualim Z
    Ther Apher Dial; 2012 Apr; 16(2):152-8. PubMed ID: 22458394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimation of Split Renal Function With
    Cao X; Xu X; Grant FD; Treves ST
    AJR Am J Roentgenol; 2016 Dec; 207(6):1324-1328. PubMed ID: 27623376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational fluid dynamics and digital particle image velocimetry study of the flow through an optimized micro-axial blood pump.
    Triep M; Brücker C; Schröder W; Siess T
    Artif Organs; 2006 May; 30(5):384-91. PubMed ID: 16683957
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept.
    Schlanstein PC; Hesselmann F; Jansen SV; Gemsa J; Kaufmann TA; Klaas M; Roggenkamp D; Schröder W; Schmitz-Rode T; Steinseifer U; Arens J
    Cardiovasc Eng Technol; 2015 Sep; 6(3):340-51. PubMed ID: 26577365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.