BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16050268)

  • 1. In silico modelling--pharmacophores and hERG channel models.
    Recanatini M; Cavalli A; Masetti M
    Novartis Found Symp; 2005; 266():171-81; discussion 181-5. PubMed ID: 16050268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The low-potency, voltage-dependent HERG blocker propafenone--molecular determinants and drug trapping.
    Witchel HJ; Dempsey CE; Sessions RB; Perry M; Milnes JT; Hancox JC; Mitcheson JS
    Mol Pharmacol; 2004 Nov; 66(5):1201-12. PubMed ID: 15308760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers.
    Cavalli A; Poluzzi E; De Ponti F; Recanatini M
    J Med Chem; 2002 Aug; 45(18):3844-53. PubMed ID: 12190308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling HERG and its interactions with drugs: recent advances in light of current potassium channel simulations.
    Recanatini M; Cavalli A; Masetti M
    ChemMedChem; 2008 Apr; 3(4):523-35. PubMed ID: 18224703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human ether-a-go-go-related gene channel blockers and its structural analysis for drug design.
    Narayana Moorthy NS; Ramos MJ; Fernandes PA
    Curr Drug Targets; 2013 Jan; 14(1):102-13. PubMed ID: 23061466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical basis for binding and voltage-dependent block of hERG channels by structurally diverse drugs.
    Sanguinetti MC; Chen J; Fernandez D; Kamiya K; Mitcheson J; Sanchez-Chapula JA
    Novartis Found Symp; 2005; 266():159-66; discussion 166-70. PubMed ID: 16050267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural determinants for high-affinity block of hERG potassium channels.
    Mitcheson J; Perry M; Stansfeld P; Sanguinetti MC; Witchel H; Hancox J
    Novartis Found Symp; 2005; 266():136-50; discussion 150-8. PubMed ID: 16050266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined receptor and ligand-based approach to the universal pharmacophore model development for studies of drug blockade to the hERG1 pore domain.
    Durdagi S; Duff HJ; Noskov SY
    J Chem Inf Model; 2011 Feb; 51(2):463-74. PubMed ID: 21241063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants of HERG channel block by clofilium and ibutilide.
    Perry M; de Groot MJ; Helliwell R; Leishman D; Tristani-Firouzi M; Sanguinetti MC; Mitcheson J
    Mol Pharmacol; 2004 Aug; 66(2):240-9. PubMed ID: 15266014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular determinants of high-affinity drug binding to HERG channels.
    Mitcheson JS; Perry MD
    Curr Opin Drug Discov Devel; 2003 Sep; 6(5):667-74. PubMed ID: 14579516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining structure- and ligand-based approaches for studies of interactions between different conformations of the hERG K+ channel pore and known ligands.
    Coi A; Bianucci AM
    J Mol Graph Model; 2013 Nov; 46():93-104. PubMed ID: 24185260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of hERG K+ blocking potency: application of structural knowledge.
    Aptula AO; Cronin MT
    SAR QSAR Environ Res; 2004; 15(5-6):399-411. PubMed ID: 15669698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [HERG K+ channel, the target of anti-arrhythmias drugs].
    Guan FY; Yang SJ
    Yao Xue Xue Bao; 2007 Jul; 42(7):687-91. PubMed ID: 17882949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The IKr drug response is modulated by KCR1 in transfected cardiac and noncardiac cell lines.
    Kupershmidt S; Yang IC; Hayashi K; Wei J; Chanthaphaychith S; Petersen CI; Johns DC; George AL; Roden DM; Balser JR
    FASEB J; 2003 Dec; 17(15):2263-5. PubMed ID: 14525949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive in silico modeling for hERG channel blockers.
    Aronov AM
    Drug Discov Today; 2005 Jan; 10(2):149-55. PubMed ID: 15718164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring blocker binding to a homology model of the open hERG K+ channel using docking and molecular dynamics methods.
    Osterberg F; Aqvist J
    FEBS Lett; 2005 May; 579(13):2939-44. PubMed ID: 15893317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation gating determines drug potency: a common mechanism for drug blockade of HERG channels.
    Yang BF; Xu DH; Xu CQ; Li Z; Du ZM; Wang HZ; Dong DL
    Acta Pharmacol Sin; 2004 May; 25(5):554-60. PubMed ID: 15132818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-state homology model of the hERG K+ channel: application to ligand binding.
    Rajamani R; Tounge BA; Li J; Reynolds CH
    Bioorg Med Chem Lett; 2005 Mar; 15(6):1737-41. PubMed ID: 15745831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common pharmacophores for uncharged human ether-a-go-go-related gene (hERG) blockers.
    Aronov AM
    J Med Chem; 2006 Nov; 49(23):6917-21. PubMed ID: 17154521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. APETx1, a new toxin from the sea anemone Anthopleura elegantissima, blocks voltage-gated human ether-a-go-go-related gene potassium channels.
    Diochot S; Loret E; Bruhn T; BĂ©ress L; Lazdunski M
    Mol Pharmacol; 2003 Jul; 64(1):59-69. PubMed ID: 12815161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.