These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 16050270)
21. Computational approaches to understand the adverse drug effect on potassium, sodium and calcium channels for predicting TdP cardiac arrhythmias. Sharifi M J Mol Graph Model; 2017 Sep; 76():152-160. PubMed ID: 28756335 [TBL] [Abstract][Full Text] [Related]
22. Drug-induced QT-interval prolongation and recurrent torsade de pointes in a child with heterotaxy syndrome and KCNE1 D85N polymorphism. Lin L; Horigome H; Nishigami N; Ohno S; Horie M; Sumazaki R J Electrocardiol; 2012; 45(6):770-3. PubMed ID: 22999324 [TBL] [Abstract][Full Text] [Related]
23. QT interval prolongation and cardiac risk assessment for novel drugs. Picard S; Lacroix P Curr Opin Investig Drugs; 2003 Mar; 4(3):303-8. PubMed ID: 12735231 [TBL] [Abstract][Full Text] [Related]
24. Effects of a typical I(Kr) channel blocker sematilide on the relationship between ventricular repolarization, refractoriness and onset of torsades de pointes. Sugiyama A; Hashimoto K Jpn J Pharmacol; 2002 Apr; 88(4):414-21. PubMed ID: 12046984 [TBL] [Abstract][Full Text] [Related]
25. Blockade of HERG channels by HIV protease inhibitors. Anson BD; Weaver JG; Ackerman MJ; Akinsete O; Henry K; January CT; Badley AD Lancet; 2005 Feb 19-25; 365(9460):682-6. PubMed ID: 15721475 [TBL] [Abstract][Full Text] [Related]
26. Cellular mechanisms underlying the long QT syndrome. Antzelevitch C; Shimizu W Curr Opin Cardiol; 2002 Jan; 17(1):43-51. PubMed ID: 11790933 [TBL] [Abstract][Full Text] [Related]
27. Cellular and ionic mechanism for drug-induced long QT syndrome and effectiveness of verapamil. Aiba T; Shimizu W; Inagaki M; Noda T; Miyoshi S; Ding WG; Zankov DP; Toyoda F; Matsuura H; Horie M; Sunagawa K J Am Coll Cardiol; 2005 Jan; 45(2):300-7. PubMed ID: 15653031 [TBL] [Abstract][Full Text] [Related]
28. Arrhythmogenic mechanisms of QT prolonging drugs: is QT prolongation really the problem? Antzelevitch C J Electrocardiol; 2004; 37 Suppl():15-24. PubMed ID: 15534788 [TBL] [Abstract][Full Text] [Related]
29. QT prolongation through hERG K(+) channel blockade: current knowledge and strategies for the early prediction during drug development. Recanatini M; Poluzzi E; Masetti M; Cavalli A; De Ponti F Med Res Rev; 2005 Mar; 25(2):133-66. PubMed ID: 15389727 [TBL] [Abstract][Full Text] [Related]
30. The long QT syndrome: a clinical counterpart of hERG mutations. Schwartz PJ Novartis Found Symp; 2005; 266():186-98; discussion 198-203. PubMed ID: 16050269 [TBL] [Abstract][Full Text] [Related]
31. [Sudden cardiac death and inherited repolarization disorders]. Gościńska K; Sredniawa B; Pasyk S Przegl Lek; 2002; 59(7):523-6. PubMed ID: 12516242 [TBL] [Abstract][Full Text] [Related]
32. Proarrhythmia as a class effect of quinolones: increased dispersion of repolarization and triangulation of action potential predict torsades de pointes. Milberg P; Hilker E; Ramtin S; Cakir Y; Stypmann J; Engelen MA; Mönnig G; Osada N; Breithardt G; Haverkamp W; Eckardt L J Cardiovasc Electrophysiol; 2007 Jun; 18(6):647-54. PubMed ID: 17388913 [TBL] [Abstract][Full Text] [Related]
33. In vivo mechanisms precipitating torsades de pointes in a canine model of drug-induced long-QT1 syndrome. Gallacher DJ; Van de Water A; van der Linde H; Hermans AN; Lu HR; Towart R; Volders PG Cardiovasc Res; 2007 Nov; 76(2):247-56. PubMed ID: 17669388 [TBL] [Abstract][Full Text] [Related]
34. Pharmacological enhancement of cardiac gap junction coupling prevents arrhythmias in canine LQT2 model. Quan XQ; Bai R; Lu JG; Patel C; Liu N; Ruan Y; Chen BD; Ruan L; Zhang CT Cell Commun Adhes; 2009; 16(1-3):29-38. PubMed ID: 19629804 [TBL] [Abstract][Full Text] [Related]
35. Potassium current antagonist properties and proarrhythmic consequences of quinolone antibiotics. Anderson ME; Mazur A; Yang T; Roden DM J Pharmacol Exp Ther; 2001 Mar; 296(3):806-10. PubMed ID: 11181910 [TBL] [Abstract][Full Text] [Related]
36. Verapamil prevents torsade de pointes by reduction of transmural dispersion of repolarization and suppression of early afterdepolarizations in an intact heart model of LQT3. Milberg P; Reinsch N; Osada N; Wasmer K; Mönnig G; Stypmann J; Breithardt G; Haverkamp W; Eckardt L Basic Res Cardiol; 2005 Jul; 100(4):365-71. PubMed ID: 15944809 [TBL] [Abstract][Full Text] [Related]
37. Abnormal repolarization dynamics in a patient with KCNE1(G38S) who presented with torsades de pointes. Yamaguchi Y; Mizumaki K; Hata Y; Inoue H J Electrocardiol; 2016; 49(1):94-8. PubMed ID: 26520166 [TBL] [Abstract][Full Text] [Related]
38. Drug-induced torsades de pointes: the evolving role of pharmacogenetics. Fitzgerald PT; Ackerman MJ Heart Rhythm; 2005 Nov; 2(2 Suppl):S30-7. PubMed ID: 16253929 [TBL] [Abstract][Full Text] [Related]
39. Increasing gap junction coupling reduces transmural dispersion of repolarization and prevents torsade de pointes in rabbit LQT3 model. Quan XQ; Bai R; Liu N; Chen BD; Zhang CT J Cardiovasc Electrophysiol; 2007 Nov; 18(11):1184-9. PubMed ID: 17711442 [TBL] [Abstract][Full Text] [Related]
40. Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia: discrete arrhythmogenic consequences related to differential delayed-rectifier changes. Tsuji Y; Zicha S; Qi XY; Kodama I; Nattel S Circulation; 2006 Jan; 113(3):345-55. PubMed ID: 16432066 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]