BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16050808)

  • 1. Regulation of insulin gene expression by overlapping DNA-binding elements.
    Nishimura W; Salameh T; Kondo T; Sharma A
    Biochem J; 2005 Nov; 392(Pt 1):181-9. PubMed ID: 16050808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription factors recognizing overlapping C1-A2 binding sites positively regulate insulin gene expression.
    Harrington RH; Sharma A
    J Biol Chem; 2001 Jan; 276(1):104-13. PubMed ID: 11024035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells.
    Matsuoka TA; Zhao L; Artner I; Jarrett HW; Friedman D; Means A; Stein R
    Mol Cell Biol; 2003 Sep; 23(17):6049-62. PubMed ID: 12917329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATF2 interacts with beta-cell-enriched transcription factors, MafA, Pdx1, and beta2, and activates insulin gene transcription.
    Han SI; Yasuda K; Kataoka K
    J Biol Chem; 2011 Mar; 286(12):10449-56. PubMed ID: 21278380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated glucose attenuates human insulin gene promoter activity in INS-1 pancreatic beta-cells via reduced nuclear factor binding to the A5/core and Z element.
    Pino MF; Ye DZ; Linning KD; Green CD; Wicksteed B; Poitout V; Olson LK
    Mol Endocrinol; 2005 May; 19(5):1343-60. PubMed ID: 15650027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of beta-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA.
    Olbrot M; Rud J; Moss LG; Sharma A
    Proc Natl Acad Sci U S A; 2002 May; 99(10):6737-42. PubMed ID: 12011435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MafA stability in pancreatic beta cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3.
    Han SI; Aramata S; Yasuda K; Kataoka K
    Mol Cell Biol; 2007 Oct; 27(19):6593-605. PubMed ID: 17682063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PIASy is a SUMOylation-independent negative regulator of the insulin transactivator MafA.
    Onishi S; Kataoka K
    J Mol Endocrinol; 2019 Nov; 63(4):297-308. PubMed ID: 31614335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic activation of the insulin gene promoter by the beta-cell enriched transcription factors MafA, Beta2, and Pdx1.
    Aramata S; Han SI; Yasuda K; Kataoka K
    Biochim Biophys Acta; 2005 Jul; 1730(1):41-6. PubMed ID: 15993959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene.
    Kataoka K; Han SI; Shioda S; Hirai M; Nishizawa M; Handa H
    J Biol Chem; 2002 Dec; 277(51):49903-10. PubMed ID: 12368292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse MafA, homologue of zebrafish somite Maf 1, contributes to the specific transcriptional activity through the insulin promoter.
    Kajihara M; Sone H; Amemiya M; Katoh Y; Isogai M; Shimano H; Yamada N; Takahashi S
    Biochem Biophys Res Commun; 2003 Dec; 312(3):831-42. PubMed ID: 14680841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expedient chemical synthesis of 75mer DNA binding domain of MafA: an insight on its binding to insulin enhancer.
    Pellegrino S; Annoni C; Contini A; Clerici F; Gelmi ML
    Amino Acids; 2012 Nov; 43(5):1995-2003. PubMed ID: 22476346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of PDX-1 in activation of human insulin gene transcription.
    Le Lay J; Stein R
    J Endocrinol; 2006 Feb; 188(2):287-94. PubMed ID: 16461554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel function of Onecut1 protein as a negative regulator of MafA gene expression.
    Yamamoto K; Matsuoka TA; Kawashima S; Takebe S; Kubo F; Miyatsuka T; Kaneto H; Shimomura I
    J Biol Chem; 2013 Jul; 288(30):21648-58. PubMed ID: 23775071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MafA, NeuroD1, and HNF1β synergistically activate the Slc2a2 (Glut2) gene in β-cells.
    Ono Y; Kataoka K
    J Mol Endocrinol; 2021 Jul; 67(3):71-82. PubMed ID: 34223824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin.
    Matsuoka TA; Artner I; Henderson E; Means A; Sander M; Stein R
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2930-3. PubMed ID: 14973194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative contribution of PDX-1, MafA and E47/beta2 to the regulation of the human insulin promoter.
    Docherty HM; Hay CW; Ferguson LA; Barrow J; Durward E; Docherty K
    Biochem J; 2005 Aug; 389(Pt 3):813-20. PubMed ID: 15862113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles and regulation of transcription factor MafA in islet beta-cells.
    Aramata S; Han SI; Kataoka K
    Endocr J; 2007 Dec; 54(5):659-66. PubMed ID: 17785922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells.
    Nishimura W; Kondo T; Salameh T; El Khattabi I; Dodge R; Bonner-Weir S; Sharma A
    Dev Biol; 2006 May; 293(2):526-39. PubMed ID: 16580660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of CHOP-10/GADD153 gene expression by MAPK signaling in pancreatic beta-cells.
    Lawrence MC; McGlynn K; Naziruddin B; Levy MF; Cobb MH
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11518-25. PubMed ID: 17615236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.