These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16051434)

  • 1. Kinetics of heavy metal uptake by vegetation immobilized in a polysulfone or polycarbonate polymeric matrix.
    Hardin AM; Admassu W
    J Hazard Mater; 2005 Nov; 126(1-3):40-53. PubMed ID: 16051434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.
    Vijayaraghavan K; Teo TT; Balasubramanian R; Joshi UM
    J Hazard Mater; 2009 May; 164(2-3):1019-23. PubMed ID: 18926627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.
    Khan E; Khaodhir S; Ruangrote D
    Bioresour Technol; 2009 Oct; 100(19):4454-61. PubMed ID: 19450977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations.
    Kalmykova Y; Strömvall AM; Steenari BM
    J Hazard Mater; 2008 Apr; 152(2):885-91. PubMed ID: 17765394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust.
    Rafatullah M; Sulaiman O; Hashim R; Ahmad A
    J Hazard Mater; 2009 Oct; 170(2-3):969-77. PubMed ID: 19520510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal fates in laboratory bioretention systems.
    Sun X; Davis AP
    Chemosphere; 2007 Jan; 66(9):1601-9. PubMed ID: 17005239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of chromium and lead by a sulfate-reducing consortium using peat moss as carbon source.
    Márquez-Reyes JM; López-Chuken UJ; Valdez-González A; Luna-Olvera HA
    Bioresour Technol; 2013 Sep; 144():128-34. PubMed ID: 23859988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexavalent chromium removal by ferrochromium slag.
    Erdem M; Altundoğan HS; Turan MD; Tümen F
    J Hazard Mater; 2005 Nov; 126(1-3):176-82. PubMed ID: 16098660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery's waste biomass.
    Chen C; Wang J
    J Hazard Mater; 2008 Feb; 151(1):65-70. PubMed ID: 17604909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.
    Mikes J; Siglova M; Cejkova A; Masak J; Jirku V
    Water Sci Technol; 2005; 52(10-11):151-6. PubMed ID: 16459787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants.
    Benhima H; Chiban M; Sinan F; Seta P; Persin M
    Colloids Surf B Biointerfaces; 2008 Jan; 61(1):10-6. PubMed ID: 17869071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus.
    Mata YN; Blázquez ML; Ballester A; González F; Muñoz JA
    J Hazard Mater; 2009 Apr; 163(2-3):555-62. PubMed ID: 18760533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism.
    Pan B; Zhang Q; Du W; Zhang W; Pan B; Zhang Q; Xu Z; Zhang Q
    Water Res; 2007 Jul; 41(14):3103-11. PubMed ID: 17433402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of lead from aqueous solution by Ficus religiosa leaves: batch and column study.
    Qaiser S; Saleemi AR; Umar M
    J Hazard Mater; 2009 Jul; 166(2-3):998-1005. PubMed ID: 19147289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin.
    Sengil IA; Ozacar M
    J Hazard Mater; 2009 Jul; 166(2-3):1488-94. PubMed ID: 19188018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.
    Pan BC; Zhang QR; Zhang WM; Pan BJ; Du W; Lv L; Zhang QJ; Xu ZW; Zhang QX
    J Colloid Interface Sci; 2007 Jun; 310(1):99-105. PubMed ID: 17336317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on removal characteristics of heavy metals from aqueous solution by fly ash.
    Cho H; Oh D; Kim K
    J Hazard Mater; 2005 Dec; 127(1-3):187-95. PubMed ID: 16125307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of heavy metal ions by silica gel-immobilized, proton-ionizable calix[4]arenes.
    Wang J; Zhang D; Lawson TR; Bartsch RA
    Talanta; 2009 Apr; 78(2):477-83. PubMed ID: 19203612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.