These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 16052382)
21. Photosynthesis in sediments determined at high spatial resolution by the use of microelectrodes. Nakamura Y; Satoh H; Okabe S; Watanabe Y Water Res; 2004 May; 38(9):2439-47. PubMed ID: 15142806 [TBL] [Abstract][Full Text] [Related]
22. Coexisting living stromatolites and infaunal metazoans. Rishworth GM; Perissinotto R; Bird MS Oecologia; 2016 Oct; 182(2):539-45. PubMed ID: 27334871 [TBL] [Abstract][Full Text] [Related]
23. Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat. Jorgensen BB; Cohen Y; Des Marais DJ Appl Environ Microbiol; 1987 Apr; 53(4):879-86. PubMed ID: 11536572 [TBL] [Abstract][Full Text] [Related]
24. Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem. Al-Najjar MA; de Beer D; Jørgensen BB; Kühl M; Polerecky L ISME J; 2010 Mar; 4(3):440-9. PubMed ID: 19907503 [TBL] [Abstract][Full Text] [Related]
25. Spatial and seasonal variability of sediment oxygen consumption and nutrient fluxes at the sediment water interface in a sub-tropical lagoon (New Caledonia). Grenz C; Denis L; Pringault O; Fichez R Mar Pollut Bull; 2010; 61(7-12):399-412. PubMed ID: 20638691 [TBL] [Abstract][Full Text] [Related]
26. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs. Klatt JM; Haas S; Yilmaz P; de Beer D; Polerecky L Environ Microbiol; 2015 Sep; 17(9):3301-13. PubMed ID: 25630511 [TBL] [Abstract][Full Text] [Related]
27. Impact of zinc and nickel on oxygen consumption of benthic microbial communities assessed with microsensors. Viret H; Pringault O; Duran R Sci Total Environ; 2006 Aug; 367(1):302-11. PubMed ID: 16427683 [TBL] [Abstract][Full Text] [Related]
28. Insights into foraminiferal influences on microfabrics of microbialites at Highborne Cay, Bahamas. Bernhard JM; Edgcomb VP; Visscher PT; McIntyre-Wressnig A; Summons RE; Bouxsein ML; Louis L; Jeglinski M Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9830-4. PubMed ID: 23716649 [TBL] [Abstract][Full Text] [Related]
29. Metagenomic Analysis Suggests Modern Freshwater Microbialites Harbor a Distinct Core Microbial Community. White RA; Chan AM; Gavelis GS; Leander BS; Brady AL; Slater GF; Lim DS; Suttle CA Front Microbiol; 2015; 6():1531. PubMed ID: 26903951 [TBL] [Abstract][Full Text] [Related]
30. Photosynthesis assessment in microphytobenthos using conventional and imaging pulse amplitude modulation fluorometry. Vieira S; Ribeiro L; Jesus B; Cartaxana P; da Silva JM Photochem Photobiol; 2013; 89(1):97-102. PubMed ID: 22891982 [TBL] [Abstract][Full Text] [Related]
31. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India. Sallstedt T; Bengtson S; Broman C; Crill PM; Canfield DE Geobiology; 2018 Mar; 16(2):139-159. PubMed ID: 29380943 [TBL] [Abstract][Full Text] [Related]
32. Microbialite taphonomy and biogenicity: new insights from NanoSIMS. Wacey D; Gleeson D; Kilburn MR Geobiology; 2010 Dec; 8(5):403-16. PubMed ID: 20597990 [TBL] [Abstract][Full Text] [Related]
33. Lacustrine Nostoc (Nostocales) and associated microbiome generate a new type of modern clotted microbialite. Graham LE; Knack JJ; Piotrowski MJ; Wilcox LW; Cook ME; Wellman CH; Taylor W; Lewis LA; Arancibia-Avila P J Phycol; 2014 Apr; 50(2):280-91. PubMed ID: 26988185 [TBL] [Abstract][Full Text] [Related]
34. Entrapped Sediments as a Source of Phosphorus in Epilithic Cyanobacterial Proliferations in Low Nutrient Rivers. Wood SA; Depree C; Brown L; McAllister T; Hawes I PLoS One; 2015; 10(10):e0141063. PubMed ID: 26479491 [TBL] [Abstract][Full Text] [Related]
35. Comparative metagenomics unveils functions and genome features of microbialite-associated communities along a depth gradient. Saghaï A; Zivanovic Y; Moreira D; Benzerara K; Bertolino P; Ragon M; Tavera R; López-Archilla AI; López-García P Environ Microbiol; 2016 Dec; 18(12):4990-5004. PubMed ID: 27422734 [TBL] [Abstract][Full Text] [Related]
36. Effect of oxygen concentration on photosynthesis and respiration in two hypersaline microbial mats. Grötzschel S; de Beer D Microb Ecol; 2002 Oct; 44(3):208-16. PubMed ID: 12154389 [TBL] [Abstract][Full Text] [Related]
37. Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the chlorophyll d-containing oxyphotobacterium Acaryochloris marina. Gloag RS; Ritchie RJ; Chen M; Larkum AW; Quinnell RG Biochim Biophys Acta; 2007 Feb; 1767(2):127-35. PubMed ID: 17223068 [TBL] [Abstract][Full Text] [Related]
38. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Breitbart M; Hoare A; Nitti A; Siefert J; Haynes M; Dinsdale E; Edwards R; Souza V; Rohwer F; Hollander D Environ Microbiol; 2009 Jan; 11(1):16-34. PubMed ID: 18764874 [TBL] [Abstract][Full Text] [Related]
39. Modern carbonate microbialites from an asbestos open pit pond, Yukon, Canada. Power IM; Wilson S; Dipple GM; Southam G Geobiology; 2011 Mar; 9(2):180-95. PubMed ID: 21231993 [TBL] [Abstract][Full Text] [Related]
40. High-nitrogen and low-irradiance can restrict energy utilization in photosynthesis of successional tree species in low subtropical forest. Cai X; Sun G; Zhao P; Liu X Sci China C Life Sci; 2008 Jul; 51(7):592-603. PubMed ID: 18622742 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]