BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16052743)

  • 1. Discontinuous pore fluid distribution under microgravity--KC-135 flight investigations.
    Reddi LN; Xiao M; Steinberg SL
    Soil Sci Soc Am J; 2005; 69(3):593-8. PubMed ID: 16052743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous media matric potential and water content measurements during parabolic flight.
    Norikane JH; Jones SB; Steinberg SL; Levine HG; Or D
    Habitation (Elmsford); 2005; 10(2):117-26. PubMed ID: 15751144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microgravity effects on water flow and distribution in unsaturated porous media: analyses of flight experiments.
    Jones SB; Or D
    Water Resour Res; 1999 Apr; 35(4):929-42. PubMed ID: 11543365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of hydraulic characteristics of porous media used to grow plants in microgravity.
    Steinberg SL; Poritz D
    Soil Sci Soc Am J; 2005; 69(2):301-10. PubMed ID: 16052740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody binding in altered gravity: implications for immunosorbent assay during space flight.
    Maule J; Fogel M; Steele A; Wainwright N; Pierson DL; McKay DS
    J Gravit Physiol; 2003 Dec; 10(2):47-55. PubMed ID: 15838989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary movement of liquid in granular beds in microgravity.
    Yendler BS; Webbon B; Podolski I; Bula RJ
    Adv Space Res; 1996; 18(4-5):233-7. PubMed ID: 11538803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods.
    Chau JF; Or D; Sukop MC
    Water Resour Res; 2005 Aug; 41(8):W08410. PubMed ID: 16173154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium.
    Steinberg SL; Kluitenberg GJ; Jones SB; Daidzic NE; Reddi LN; Xiao M; Tuller M; Newman RM; Or D; Alexander JI
    J Am Soc Hortic Sci; 2005 Sep; 130(5):767-74. PubMed ID: 16173159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of two-phase flow in membranes and porous media in microgravity as applied to plant irrigation in space.
    Scovazzo P; Illangasekare TH; Hoehn A; Todd P
    Water Resour Res; 2001 May; 37(5):1231-43. PubMed ID: 12238522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity.
    Convertino VA
    Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S45-52. PubMed ID: 8897404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous Tube Plant Nutrient Delivery System development: a device for nutrient delivery in microgravity.
    Dreschel TW; Brown CS; Piastuch WC; Hinkle CR; Knott WM
    Adv Space Res; 1994 Nov; 14(11):47-51. PubMed ID: 11540217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory outreach: student assessment of flow cytometer fluidics in zero gravity.
    Crucian B; Norman J; Brentz J; Pietrzyk R; Sams C
    Lab Med; 2000 Oct; 31(10):569-73. PubMed ID: 12442765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ASTROCULTURE(TM) flight experiment series, validating technologies for growing plants in space.
    Morrow RC; Bula RJ; Tibbitts TW; Dinauer WR
    Adv Space Res; 1994 Nov; 14(11):29-37. PubMed ID: 11540195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of moisture content for wheat seedling germination in a cellulose acetate medium for a space flight experiment.
    Johnson CF; Dreschel TW; Brown CS; Wheeler RM
    Adv Space Res; 1996; 18(4-5):239-42. PubMed ID: 11538804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particulated growth media for optimal liquid and gaseous fluxes to plant roots in microgravity.
    Jones SB; Or D
    Adv Space Res; 1998; 22(10):1413-8. PubMed ID: 11542601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Germination and elongation of flax in microgravity.
    Levine HG; Anderson K; Boody A; Cox D; Kuznetsov OA; Hasenstein KH
    Adv Space Res; 2003; 31(10):2261-8. PubMed ID: 14686441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience.
    Ferguson F; Lilleleht LU; Nuth J; Stephens JR; Bussoletti E; Colangeli L; Mennella V; Dell'Aversana P; Mirra C
    Microgravity Q; 1993; 3(2-4):97-100. PubMed ID: 11541443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of simulated microgravity on bacteria from the Mir space station.
    Baker PW; Leff L
    Microgravity Sci Technol; 2004; 15(1):35-41. PubMed ID: 15773020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microgravity and hypergravity on embryo axis alignment during postencystment embryogenesis in Artemia franciscana (Anostraca).
    Rosowski JR; Gouthro MA; Schmidt KK; Klement BJ; Spooner BS
    J Crustac Biol; 1995 Nov; 15(4):625-32. PubMed ID: 11539283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.