These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 16053064)
41. Halogenated compounds and climate change: future emission levels and reduction costs. Harnisch J; de Jager D; Gale J; Stobbel O Environ Sci Pollut Res Int; 2002; 9(6):369-74. PubMed ID: 12515342 [TBL] [Abstract][Full Text] [Related]
42. Changes in tropospheric composition and air quality. Tang X; Madronich S; Wallington T; Calamari D J Photochem Photobiol B; 1998 Oct; 46(1-3):83-95. PubMed ID: 9894352 [TBL] [Abstract][Full Text] [Related]
43. Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia). Toro MV; Cremades LV; Calbó J Chemosphere; 2006 Oct; 65(5):881-8. PubMed ID: 16631888 [TBL] [Abstract][Full Text] [Related]
44. Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 2. Incorporation of chlorine emissions. Wang L; Thompson T; McDonald-Buller EC; Allen DT Environ Sci Technol; 2007 Apr; 41(7):2103-7. PubMed ID: 17438749 [TBL] [Abstract][Full Text] [Related]
45. Uncertainties influencing health-based prioritization of ozone abatement options. Digar A; Cohan DS; Bell ML Environ Sci Technol; 2011 Sep; 45(18):7761-7. PubMed ID: 21838245 [TBL] [Abstract][Full Text] [Related]
46. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature. Zhao Y; McElroy MB; Xing J; Duan L; Nielsen CP; Lei Y; Hao J Sci Total Environ; 2011 Nov; 409(24):5177-87. PubMed ID: 21944199 [TBL] [Abstract][Full Text] [Related]
47. Nighttime Chemistry and Morning Isoprene Can Drive Urban Ozone Downwind of a Major Deciduous Forest. Millet DB; Baasandorj M; Hu L; Mitroo D; Turner J; Williams BJ Environ Sci Technol; 2016 Apr; 50(8):4335-42. PubMed ID: 27010702 [TBL] [Abstract][Full Text] [Related]
48. The contribution of China's emissions to global climate forcing. Li B; Gasser T; Ciais P; Piao S; Tao S; Balkanski Y; Hauglustaine D; Boisier JP; Chen Z; Huang M; Li LZ; Li Y; Liu H; Liu J; Peng S; Shen Z; Sun Z; Wang R; Wang T; Yin G; Yin Y; Zeng H; Zeng Z; Zhou F Nature; 2016 Mar; 531(7594):357-61. PubMed ID: 26983540 [TBL] [Abstract][Full Text] [Related]
49. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496 [TBL] [Abstract][Full Text] [Related]
50. Cross influences of ozone and sulfate precursor emissions changes on air quality and climate. Unger N; Shindell DT; Koch DM; Streets DG Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4377-80. PubMed ID: 16537360 [TBL] [Abstract][Full Text] [Related]
51. Air quality and climate--synergies and trade-offs. von Schneidemesser E; Monks PS Environ Sci Process Impacts; 2013 Jul; 15(7):1315-25. PubMed ID: 23743609 [TBL] [Abstract][Full Text] [Related]
52. U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation. Garcia-Menendez F; Saari RK; Monier E; Selin NE Environ Sci Technol; 2015 Jul; 49(13):7580-8. PubMed ID: 26053628 [TBL] [Abstract][Full Text] [Related]
53. Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. Majumdar D; Ray S; Chakraborty S; Rao PS; Akolkar AB; Chowdhury M; Srivastava A J Air Waste Manag Assoc; 2014 Jul; 64(7):834-45. PubMed ID: 25122957 [TBL] [Abstract][Full Text] [Related]
54. Global environmental implications of atmospheric methane removal through chlorine-mediated chemistry-climate interactions. Li Q; Meidan D; Hess P; Añel JA; Cuevas CA; Doney S; Fernandez RP; van Herpen M; Höglund-Isaksson L; Johnson MS; Kinnison DE; Lamarque JF; Röckmann T; Mahowald NM; Saiz-Lopez A Nat Commun; 2023 Jul; 14(1):4045. PubMed ID: 37422475 [TBL] [Abstract][Full Text] [Related]
55. Allocating anthropogenic pollutant emissions over space: application to ozone pollution management. Diem JE; Comrie AC J Environ Manage; 2001 Dec; 63(4):425-47. PubMed ID: 11826724 [TBL] [Abstract][Full Text] [Related]
56. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions. Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212 [TBL] [Abstract][Full Text] [Related]
57. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Sitch S; Cox PM; Collins WJ; Huntingford C Nature; 2007 Aug; 448(7155):791-4. PubMed ID: 17653194 [TBL] [Abstract][Full Text] [Related]
58. Changes in the regional emissions of greenhouse gases and ozone-depleting compounds. Khalil MA; Rasmussen RA Environ Sci Technol; 2004 Jan; 38(2):364-6. PubMed ID: 14750708 [TBL] [Abstract][Full Text] [Related]
59. Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century. Alvim-Ferraz MC; Sousa SI; Pereira MC; Martins FG Environ Pollut; 2006 Apr; 140(3):516-24. PubMed ID: 16171911 [TBL] [Abstract][Full Text] [Related]
60. Demonstrating attainment of the air quality standards: integration of observations and model predictions into the probabilistic framework. Hogrefe C; Rao ST J Air Waste Manag Assoc; 2001 Jul; 51(7):1060-72. PubMed ID: 15658224 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]