BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16053078)

  • 21. The chemical and mineralogical behaviour of Pb in shooting range soils from central Sweden.
    Lin Z; Comet B; Qvarfort U; Herbert R
    Environ Pollut; 1995; 89(3):303-9. PubMed ID: 15091520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apatite ore mine tailings as an amendment for remediation of a lead-contaminated shooting range soil.
    Venäläinen SH
    Sci Total Environ; 2011 Oct; 409(21):4628-34. PubMed ID: 21871651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectroscopic speciation and quantification of lead in phosphate-amended soils.
    Scheckel KG; Ryan JA
    J Environ Qual; 2004; 33(4):1288-95. PubMed ID: 15254110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimony migration trends from a small arms firing range compared to lead, copper, and zinc.
    Martin WA; Lee LS; Schwab P
    Sci Total Environ; 2013 Oct; 463-464():222-8. PubMed ID: 23810861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioaccessibility of lead sequestered to corundum and ferrihydrite in a simulated gastrointestinal system.
    Beak DG; Basta NT; Scheckel KG; Traina SJ
    J Environ Qual; 2006; 35(6):2075-83. PubMed ID: 17071876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters.
    Batonneau Y; Bremard C; Gengembre L; Laureyns J; Le Maguer A; Le Maguer D; Perdrix E; Sobanska S
    Environ Sci Technol; 2004 Oct; 38(20):5281-9. PubMed ID: 15543727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an x-ray absorption fine structure investigation.
    Hashimoto Y; Matsufuru H; Takaoka M; Tanida H; Sato T
    J Environ Qual; 2009; 38(4):1420-8. PubMed ID: 19465717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extractability and leachability of Pb in a shooting range soil amended with poultry litter ash: investigations for immobilization potentials.
    Hashimoto Y; Taki T; Sato T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):583-90. PubMed ID: 19337921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Remediation of Pb-contaminated soil using modified bauxite refinery residue.
    Burton ED; Lamb DT; Hamilton J; Miller G; Johnston SG; Karimian N
    J Hazard Mater; 2022 Sep; 437():129339. PubMed ID: 35709620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioaccessibility of lead in high carbonate soils.
    Denys S; Caboche J; Tack K; Delalain P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1331-9. PubMed ID: 17654152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lead speciation in house dust from Canadian urban homes using EXAFS, micro-XRF, and micro-XRD.
    MacLean LC; Beauchemin S; Rasmussen PE
    Environ Sci Technol; 2011 Jul; 45(13):5491-7. PubMed ID: 21591711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lead Speciation, Bioaccessibility, and Sources for a Contaminated Subset of House Dust and Soils Collected from Similar United States Residences.
    Sowers TD; Blackmon MD; Wilkin RT; Rovero M; Bone SE; Jerden ML; Nelson CM; Bradham KD
    Environ Sci Technol; 2024 May; 58(21):9339-9349. PubMed ID: 38748567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques.
    Radu T; Diamond D
    J Hazard Mater; 2009 Nov; 171(1-3):1168-71. PubMed ID: 19595504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Weathering and dissolution rates among Pb shot pellets of differing elemental compositions exposed to various aqueous and soil conditions.
    Takamatsu T; Murata T; Koshikawa MK; Watanabe M
    Arch Environ Contam Toxicol; 2010 Jul; 59(1):91-9. PubMed ID: 20039167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo-in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils.
    Smith E; Kempson IM; Juhasz AL; Weber J; Rofe A; Gancarz D; Naidu R; McLaren RG; Gräfe M
    Environ Sci Technol; 2011 Jul; 45(14):6145-52. PubMed ID: 21707121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field assessment of lead immobilization in a contaminated soil after phosphate application.
    Melamed R; Cao X; Chen M; Ma LQ
    Sci Total Environ; 2003 Apr; 305(1-3):117-27. PubMed ID: 12670762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zn speciation in the organic horizon of a contaminated soil by micro-X-ray fluorescence, micro- and powder-EXAFS spectroscopy, and isotopic dilution.
    Sarret G; Balesdent J; Bouziri L; Garnier JM; Marcus MA; Geoffroy N; Panfili F; Manceau A
    Environ Sci Technol; 2004 May; 38(10):2792-801. PubMed ID: 15212252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy.
    Ettler V; Vanek A; Mihaljevic M; Bezdicka P
    Chemosphere; 2005 Mar; 58(10):1449-59. PubMed ID: 15686764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. XAS study of lead speciation in a central Italy calcareous soil.
    Comaschi T; Meneghini C; Businelli D; Mobilio S; Businelli M
    Environ Sci Pollut Res Int; 2011 May; 18(4):669-76. PubMed ID: 21080090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.