These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16053533)

  • 41. Cortical responses to object size-dependent spectral interference patterns in echolocating bats.
    Firzlaff U; Schuller G
    Eur J Neurosci; 2007 Nov; 26(10):2747-55. PubMed ID: 18001272
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of echolocation and communication vocalizations in the big brown bat, Eptesicus fuscus.
    Monroy JA; Carter ME; Miller KE; Covey E
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):459-67. PubMed ID: 21327335
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The midbrain periaqueductal gray: a brainstem structure involved in vocalization.
    Larson CR
    J Speech Hear Res; 1985 Jun; 28(2):241-9. PubMed ID: 4010254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Developmental changes in ultrasonic vocalizations by infant Japanese echolocating bats, Pipistrellus abramus.
    Hiryu S; Riquimaroux H
    J Acoust Soc Am; 2011 Oct; 130(4):EL147-53. PubMed ID: 21974484
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [The role of the central substantia grisea of the midbrain in regulating the sound emission process in the bat Rhinolophus ferrumequinum].
    Movchan EV; Burikova NV
    Zh Evol Biokhim Fiziol; 1994; 30(5):667-75. PubMed ID: 8721310
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An autocorrelation model of bat sonar.
    Wiegrebe L
    Biol Cybern; 2008 Jun; 98(6):587-95. PubMed ID: 18491168
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cannot see you but can hear you: vocal identity recognition in microbats.
    Guo X; Luo B; Liu Y; Jiang TL; Feng J
    Dongwuxue Yanjiu; 2015 Sep; 36(5):257-62. PubMed ID: 26452691
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Duration-sensitive neurons in the inferior colliculus of horseshoe bats: adaptations for using CF-FM echolocation pulses.
    Luo F; Metzner W; Wu F; Zhang S; Chen Q
    J Neurophysiol; 2008 Jan; 99(1):284-96. PubMed ID: 18003879
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The absence of spatial echo suppression in the echolocating bats Megaderma lyra and Phyllostomus discolor.
    Schuchmann M; Hübner M; Wiegrebe L
    J Exp Biol; 2006 Jan; 209(Pt 1):152-7. PubMed ID: 16354786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The auditory cortex of the bat Molossus molossus: disproportionate search call frequency representation.
    Macías S; Mora EC; Kössl M; Abel C; Foeller E
    Hear Res; 2009 Apr; 250(1-2):19-26. PubMed ID: 19450436
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Midbrain neurons important for the production of mouse ultrasonic vocalizations are not required for distress calls.
    Ziobro P; Woo Y; He Z; Tschida K
    Curr Biol; 2024 Mar; 34(5):1107-1113.e3. PubMed ID: 38301649
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Audiovocal behavior of Doppler-shift compensation in the horseshoe bat survives bilateral lesion of the paralemniscal tegmental area.
    Pillat J; Schuller G
    Exp Brain Res; 1998 Mar; 119(1):17-26. PubMed ID: 9521532
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Breaking the trade-off: rainforest bats maximize bandwidth and repetition rate of echolocation calls as they approach prey.
    Schmieder DA; Kingston T; Hashim R; Siemers BM
    Biol Lett; 2010 Oct; 6(5):604-9. PubMed ID: 20356884
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 'Binaural echo disparity' as a potential indicator of object orientation and cue for object recognition in echolocating nectar-feeding bats.
    Holderied MW; von Helversen O
    J Exp Biol; 2006 Sep; 209(Pt 17):3457-68. PubMed ID: 16916981
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A neural basis for auditory feedback control of vocal pitch.
    Smotherman M; Zhang S; Metzner W
    J Neurosci; 2003 Feb; 23(4):1464-77. PubMed ID: 12598635
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Separating overlapping bat calls with a bi-directional long short-term memory network.
    Zhang K; Liu T; Song S; Zhao X; Sun S; Metzner W; Feng J; Liu Y
    Integr Zool; 2022 Sep; 17(5):741-751. PubMed ID: 33881210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Auditory stream segregation in an insect.
    Schul J; Sheridan RA
    Neuroscience; 2006; 138(1):1-4. PubMed ID: 16378693
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neurophysiological study on sensorimotor control mechanism in superior colliculus of echolocating bat.
    Li Y; Song YD
    ISA Trans; 2007 Apr; 46(2):157-65. PubMed ID: 17367792
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Lombard effect emerges early in young bats: implications for the development of audio-vocal integration.
    Luo J; Lingner A; Firzlaff U; Wiegrebe L
    J Exp Biol; 2017 Mar; 220(Pt 6):1032-1037. PubMed ID: 28011824
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mapping vocalization-related immediate early gene expression in echolocating bats.
    Schwartz CP; Smotherman MS
    Behav Brain Res; 2011 Oct; 224(2):358-68. PubMed ID: 21726584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.