BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 1605355)

  • 21. The generation of vertebral segmental patterning in the chick embryo.
    Senthinathan B; Sousa C; Tannahill D; Keynes R
    J Anat; 2012 Jun; 220(6):591-602. PubMed ID: 22458512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Closure of the vertebral canal in human embryos and fetuses.
    Mekonen HK; Hikspoors JPJM; Mommen G; Kruepunga N; Köhler SE; Lamers WH
    J Anat; 2017 Aug; 231(2):260-274. PubMed ID: 28585249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo.
    Stern CD; Keynes RJ
    Development; 1987 Feb; 99(2):261-72. PubMed ID: 3653002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vertebral column and associated elements in dipnoans and comparison with other fishes: development and homology.
    Arratia G; Schultze HP; Casciotta J
    J Morphol; 2001 Nov; 250(2):101-72. PubMed ID: 11746457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pax-1, a regulator of sclerotome development is induced by notochord and floor plate signals in avian embryos.
    Ebensperger C; Wilting J; Brand-Saberi B; Mizutani Y; Christ B; Balling R; Koseki H
    Anat Embryol (Berl); 1995 Apr; 191(4):297-310. PubMed ID: 7645756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of the notochord in vertebral column formation.
    Fleming A; Keynes RJ; Tannahill D
    J Anat; 2001; 199(Pt 1-2):177-80. PubMed ID: 11523820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphological analysis of the role of the neural tube and notochord in the development of somites.
    Hirano S; Hirako R; Kajita N; Norita M
    Anat Embryol (Berl); 1995 Nov; 192(5):445-57. PubMed ID: 8546336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional involvement of Pax-1 in somite development: somite dysmorphogenesis in chick embryos treated with Pax-1 paired-box antisense oligodeoxynucleotide.
    Smith CA; Tuan RS
    Teratology; 1995 Dec; 52(6):333-45. PubMed ID: 8711620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation.
    Bensimon-Brito A; Cardeira J; Cancela ML; Huysseune A; Witten PE
    BMC Dev Biol; 2012 Oct; 12():28. PubMed ID: 23043290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Segmental relationship between somites and vertebral column in zebrafish.
    Morin-Kensicki EM; Melancon E; Eisen JS
    Development; 2002 Aug; 129(16):3851-60. PubMed ID: 12135923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The binding pattern of peanut lectin associated with sclerotome migration and the formation of the vertebral axis in the chick embryo.
    Bagnall KM; Sanders EJ
    Anat Embryol (Berl); 1989; 180(5):505-13. PubMed ID: 2619093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The migration and distribution of somite cells after labelling with the carbocyanine dye, Dil: the relationship of this distribution to segmentation in the vertebrate body.
    Bagnall KM
    Anat Embryol (Berl); 1992; 185(4):317-24. PubMed ID: 1609960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal sequence in the formation of midline dermis and dorsal vertebral elements in avian embryos.
    Pu Q; Christ B; Huang R
    J Anat; 2012 Aug; 221(2):115-20. PubMed ID: 22606994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ablation of various regions within the avian vagal neural crest has differential effects on ganglion formation in the fore-, mid- and hindgut.
    Peters-van der Sanden MJ; Kirby ML; Gittenberger-de Groot A; Tibboel D; Mulder MP; Meijers C
    Dev Dyn; 1993 Mar; 196(3):183-94. PubMed ID: 8400404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Building a vertebra: Development of the amniote sclerotome.
    Draga M; Scaal M
    J Morphol; 2024 Jan; 285(1):e21665. PubMed ID: 38100740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The formation of somite compartments in the avian embryo.
    Brand-Saberi B; Wilting J; Ebensperger C; Christ B
    Int J Dev Biol; 1996 Feb; 40(1):411-20. PubMed ID: 8735956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disordered vertebral and rib morphology in pudgy mice. Structural relationships to human scoliosis.
    Shapiro F
    Adv Anat Embryol Cell Biol; 2016; 221():1-123. PubMed ID: 27655002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for resegmentation in the formation of the vertebral column using the novel approach of retroviral-mediated gene transfer.
    Ewan KB; Everett AW
    Exp Cell Res; 1992 Feb; 198(2):315-20. PubMed ID: 1729137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myogenic specification of somites is mediated by diffusible factors.
    Buffinger N; Stockdale FE
    Dev Biol; 1995 May; 169(1):96-108. PubMed ID: 7750661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals.
    Šošić D; Brand-Saberi B; Schmidt C; Christ B; Olson EN
    Dev Biol; 1997 May; 185(2):229-43. PubMed ID: 9187085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.