These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16054295)

  • 1. Force analysis and visualization of NAPL removal during surfactant-related floods in a porous medium.
    Jeong SW; Corapcioglu MY
    J Hazard Mater; 2005 Nov; 126(1-3):8-13. PubMed ID: 16054295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding.
    Jeong SW; Corapcioglu MY
    J Contam Hydrol; 2003 Jan; 60(1-2):77-96. PubMed ID: 12498575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the use of capillary numbers for quantifying the removal of DNAPL trapped in a porous medium by surfactant and surfactant foam floods.
    Jeong SW
    J Colloid Interface Sci; 2005 Feb; 282(1):182-7. PubMed ID: 15576097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants.
    Suchomel EJ; Ramsburg CA; Pennell KD
    J Contam Hydrol; 2007 Dec; 94(3-4):195-214. PubMed ID: 17628205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification.
    Wang Q; Jeong SW; Choi H
    J Hazard Mater; 2012 Apr; 213-214():299-310. PubMed ID: 22386819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.
    Sharmin R; Ioannidis MA; Legge RL
    J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of TCE recovery mechanisms using surfactant-polymer solutions in a two-dimensional heterogeneous sand model.
    Robert T; Martel R; Conrad SH; Lefebvre R; Gabriel U
    J Contam Hydrol; 2006 Jun; 86(1-2):3-31. PubMed ID: 16624443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction.
    Hofstee C; Gutiérrez Ziegler C; Trötschler O; Braun J
    J Contam Hydrol; 2003 Dec; 67(1-4):61-78. PubMed ID: 14607470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot water flushing for immiscible displacement of a viscous NAPL.
    O'Carroll DM; Sleep BE
    J Contam Hydrol; 2007 May; 91(3-4):247-66. PubMed ID: 17207892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Migration and entrapment of mercury in porous media.
    Devasena M; Nambi IM
    J Contam Hydrol; 2010 Sep; 117(1-4):60-70. PubMed ID: 20637521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of scale and dimensionality on the surfactant-enhanced solubilization of a residual DNAPL contamination.
    Schaerlaekens J; Feyen J
    J Contam Hydrol; 2004 Jul; 71(1-4):283-306. PubMed ID: 15145571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware.
    Childs J; Acosta E; Annable MD; Brooks MC; Enfield CG; Harwell JH; Hasegawa M; Knox RC; Rao PS; Sabatini DA; Shiau B; Szekeres E; Wood AL
    J Contam Hydrol; 2006 Jan; 82(1-2):1-22. PubMed ID: 16233935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation.
    Ghosh J; Tick GR
    J Contam Hydrol; 2013 Dec; 155():20-30. PubMed ID: 24113292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.
    Kim H; Ahn D; Annable MD
    J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of a DNAPL source zone in a porous aquifer using the Partitioning Interwell Tracer Test and an inverse modelling approach.
    Dridi L; Pollet I; Razakarisoa O; Schäfer G
    J Contam Hydrol; 2009 Jun; 107(1-2):22-44. PubMed ID: 19395120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-enhanced oxidation of trichloroethylene by permanganate--proof of concept.
    Li Z
    Chemosphere; 2004 Jan; 54(3):419-23. PubMed ID: 14575755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater.
    Tsai TT; Kao CM; Yeh TY; Liang SH; Chien HY
    J Hazard Mater; 2009 Jan; 161(1):111-9. PubMed ID: 18436375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory investigation of flux reduction from dense non-aqueous phase liquid (DNAPL) partial source zone remediation by enhanced dissolution.
    Kaye AJ; Cho J; Basu NB; Chen X; Annable MD; Jawitz JW
    J Contam Hydrol; 2008 Nov; 102(1-2):17-28. PubMed ID: 18420303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The photodegradation of trichloroethylene with or without the NAPL by UV irradiation in surfactant solutions.
    Jia J; Chu W
    J Hazard Mater; 2009 Jan; 161(1):196-201. PubMed ID: 18455298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.
    Li Z; Hanlie H
    Water Res; 2008 Feb; 42(3):605-14. PubMed ID: 17826816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.