These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 16054606)
1. On the generalized valence bond description of the anomeric and exo-anomeric effects: an ab initio conformational study of 2-methoxytetrahydropyran. Bitzer RS; Barbosa AG; da Silva CO; Nascimento MA Carbohydr Res; 2005 Sep; 340(13):2171-84. PubMed ID: 16054606 [TBL] [Abstract][Full Text] [Related]
2. Conformational stability of cyclobutanol from temperature dependent infrared spectra of xenon solutions, r0 structural parameters, ab initio calculations and vibrational assignment. Durig JR; Ganguly A; El Defrawy AM; Gounev TK; Guirgis GA Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1379-89. PubMed ID: 18602334 [TBL] [Abstract][Full Text] [Related]
3. The anomeric effect revisited. A possible role of the CH/n hydrogen bond. Takahashi O; Yamasaki K; Kohno Y; Ohtaki R; Ueda K; Suezawa H; Umezawa Y; Nishio M Carbohydr Res; 2007 Jul; 342(9):1202-9. PubMed ID: 17386924 [TBL] [Abstract][Full Text] [Related]
4. Linear free energy relationship for the anomeric effect: MP2, DFT and ab initio study of 2-substituted-1,4-dioxanes. Dabbagh HA; Naderi M; Chermahini AN Carbohydr Res; 2011 Jun; 346(8):1047-56. PubMed ID: 21511250 [TBL] [Abstract][Full Text] [Related]
5. Derivation of class II force fields. VI. Carbohydrate compounds and anomeric effects. Hwang MJ; Ni X; Waldman M; Ewig CS; Hagler AT Biopolymers; 1998 May; 45(6):435-68. PubMed ID: 9538697 [TBL] [Abstract][Full Text] [Related]
6. Ab initio conformational space study of model compounds of O-glycosides of serine diamide. Csonka GI; Schubert GA; Perczel A; Sosa CP; Csizmadia IG Chemistry; 2002 Oct; 8(20):4718-33. PubMed ID: 12561112 [TBL] [Abstract][Full Text] [Related]
7. Density functional study of the conformational space of 4C1 D-glucuronic acid. Nyerges B; Kovács A J Phys Chem A; 2005 Feb; 109(5):892-7. PubMed ID: 16838961 [TBL] [Abstract][Full Text] [Related]
8. The origin of the generalized anomeric effect: possibility of CH/n and CH/pi hydrogen bonds. Takahashi O; Yamasaki K; Kohno Y; Ueda K; Suezawa H; Nishio M Carbohydr Res; 2009 Jul; 344(10):1225-9. PubMed ID: 19467651 [TBL] [Abstract][Full Text] [Related]
9. Comparative performance of MM3(92) and two TINKER MM3 versions for the modeling of carbohydrates. Stortz CA J Comput Chem; 2005 Apr; 26(5):471-83. PubMed ID: 15690417 [TBL] [Abstract][Full Text] [Related]
10. 2-Deoxy-beta-D-erythro-pentofuranose: hydroxymethyl group conformation and substituent effects on molecular structure, ring geometry, and NMR spin-spin coupling constants from quantum chemical calculations. Cloran F; Carmichael I; Serianni AS J Am Chem Soc; 2001 May; 123(20):4781-91. PubMed ID: 11457288 [TBL] [Abstract][Full Text] [Related]
11. DFT calculations of the anomeric and exo-anomeric effect of the hydroperoxy and peroxy groups. Kośnik W; Bocian W; Chmielewski M; Tvaroska I Carbohydr Res; 2008 Jul; 343(9):1463-72. PubMed ID: 18456248 [TBL] [Abstract][Full Text] [Related]
12. Ab initio modelling of the anomeric and exo anomeric effects in 2-methoxytetrahydropyran and 2-methoxythiane corrected for intramolecular BSSE. Sladek V; Holka F; Tvaroška I Phys Chem Chem Phys; 2015 Jul; 17(28):18501-13. PubMed ID: 26108579 [TBL] [Abstract][Full Text] [Related]
13. Electronic and steric substituent influences on the conformational equilibria of cyclohexyl esters: the anomeric effect is not anomalous! Kleinpeter E; Taddei F; Wacker P Chemistry; 2003 Mar; 9(6):1360-8. PubMed ID: 12645025 [TBL] [Abstract][Full Text] [Related]
14. Intrinsic conformational preferences of substituted cyclohexanes and tetrahydropyrans evaluated at the CCSD(T) complete basis set limit: implications for the anomeric effect. Weldon AJ; Vickrey TL; Tschumper GS J Phys Chem A; 2005 Dec; 109(48):11073-9. PubMed ID: 16331953 [TBL] [Abstract][Full Text] [Related]
15. DFT studies of the disaccharide, alpha-maltose: relaxed isopotential maps. Schnupf U; Willett JL; Bosma WB; Momany FA Carbohydr Res; 2007 Nov; 342(15):2270-85. PubMed ID: 17669381 [TBL] [Abstract][Full Text] [Related]
16. Structures and energies of D-galactose and galabiose conformers as calculated by ab initio and semiempirical methods. Rahal-Sekkal M; Sekkal N; Kleb DC; Bleckmann P J Comput Chem; 2003 May; 24(7):806-18. PubMed ID: 12692790 [TBL] [Abstract][Full Text] [Related]
17. Anomeric effect in "high energy" phosphate bonds. Selective destabilization of the scissile bond and modulation of the exothermicity of hydrolysis. Ruben EA; Plumley JA; Chapman MS; Evanseck JD J Am Chem Soc; 2008 Mar; 130(11):3349-58. PubMed ID: 18302368 [TBL] [Abstract][Full Text] [Related]
18. The (alpha-1,6) glycosidic bond of isomaltose: a tricky system for theoretical conformational studies. Javaroni F; Ferreira AB; da Silva CO Carbohydr Res; 2009 Jul; 344(10):1235-47. PubMed ID: 19508914 [TBL] [Abstract][Full Text] [Related]
19. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
20. Highly alpha- and beta-selective radical C-glycosylation reactions using a controlling anomeric effect based on the conformational restriction strategy. A study on the conformation-anomeric effect-stereoselectivity relationship in anomeric radical reactions. Abe H; Shuto S; Matsuda A J Am Chem Soc; 2001 Dec; 123(48):11870-82. PubMed ID: 11724593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]