These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 16054647)

  • 1. Effect of multiple prolyl isomerization reactions on the stability and folding kinetics of the notch ankyrin domain: experiment and theory.
    Bradley CM; Barrick D
    J Mol Biol; 2005 Sep; 352(2):253-65. PubMed ID: 16054647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental characterization of the folding kinetics of the notch ankyrin domain.
    Mello CC; Bradley CM; Tripp KW; Barrick D
    J Mol Biol; 2005 Sep; 352(2):266-81. PubMed ID: 16095609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations.
    Ikura T; Tsurupa GP; Kuwajima K
    Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability and folding kinetics of ribonuclease T1 are strongly altered by the replacement of cis-proline 39 with alanine.
    Mayr LM; Landt O; Hahn U; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):897-912. PubMed ID: 8515459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of proline mutations on the folding of staphylococcal nuclease.
    Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K
    Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.
    Walkenhorst WF; Green SM; Roder H
    Biochemistry; 1997 May; 36(19):5795-805. PubMed ID: 9153420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic coupling of folding and prolyl isomerization of beta2-microglobulin studied by mutational analysis.
    Sakata M; Chatani E; Kameda A; Sakurai K; Naiki H; Goto Y
    J Mol Biol; 2008 Oct; 382(5):1242-55. PubMed ID: 18708068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization.
    Pierce MM; Nall BT
    J Mol Biol; 2000 May; 298(5):955-69. PubMed ID: 10801361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosyl interactions in the folding and unfolding of bovine pancreatic ribonuclease A: a study of tyrosine-to-phenylalanine mutants.
    Juminaga D; Wedemeyer WJ; Garduño-Júarez R; McDonald MA; Scheraga HA
    Biochemistry; 1997 Aug; 36(33):10131-45. PubMed ID: 9254610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intact disulfide bonds decelerate the folding of ribonuclease T1.
    Mücke M; Schmid FX
    J Mol Biol; 1994 Jun; 239(5):713-25. PubMed ID: 8014991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of prolyl isomerase on the folding reactions of staphylococcal nuclease.
    Veeraraghavan S; Nall BT; Fink AL
    Biochemistry; 1997 Dec; 36(49):15134-9. PubMed ID: 9398241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of antibody chains at different stages of folding: prolyl isomerization occurs after formation of quaternary structure.
    Lilie H; Rudolph R; Buchner J
    J Mol Biol; 1995 Apr; 248(1):190-201. PubMed ID: 7731044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis of protein folding by prolyl isomerase.
    Lang K; Schmid FX; Fischer G
    Nature; 1987 Sep 17-23; 329(6136):268-70. PubMed ID: 3306408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of ligand binding in the kinetic folding mechanism of human p21(H-ras) protein.
    Zhang J; Matthews CR
    Biochemistry; 1998 Oct; 37(42):14891-9. PubMed ID: 9778365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autocatalyzed protein folding.
    Veeraraghavan S; Holzman TF; Nall BT
    Biochemistry; 1996 Aug; 35(33):10601-7. PubMed ID: 8718848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding and association of the antibody domain CH3: prolyl isomerization preceeds dimerization.
    Thies MJ; Mayer J; Augustine JG; Frederick CA; Lilie H; Buchner J
    J Mol Biol; 1999 Oct; 293(1):67-79. PubMed ID: 10512716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dissection of the folding mechanism of the alpha subunit of tryptophan synthase: an amino-terminal autonomous folding unit controls several rate-limiting steps in the folding of a single domain protein.
    Zitzewitz JA; Matthews CR
    Biochemistry; 1999 Aug; 38(31):10205-14. PubMed ID: 10433729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of proline isomerization and off-pathway intermediates on the folding mechanism of eukaryotic UMP/CMP Kinase.
    Lorenz T; Reinstein J
    J Mol Biol; 2008 Aug; 381(2):443-55. PubMed ID: 18602116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding mechanism of the CH2 antibody domain.
    Feige MJ; Walter S; Buchner J
    J Mol Biol; 2004 Nov; 344(1):107-18. PubMed ID: 15504405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.