These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 16054840)
1. Prefrontal cortex activity in self-initiated movements is condition-specific, but not movement-related. Wiese H; Stude P; Nebel K; Forsting M; de Greiff A Neuroimage; 2005 Nov; 28(3):691-7. PubMed ID: 16054840 [TBL] [Abstract][Full Text] [Related]
2. Movement preparation in self-initiated versus externally triggered movements: an event-related fMRI-study. Wiese H; Stude P; Nebel K; de Greiff A; Forsting M; Diener HC; Keidel M Neurosci Lett; 2004 Nov; 371(2-3):220-5. PubMed ID: 15519761 [TBL] [Abstract][Full Text] [Related]
3. Self-initiated movements in chronic prefrontal traumatic brain injury: an event-related functional MRI study. Wiese H; Tönnes C; de Greiff A; Nebel K; Diener HC; Stude P Neuroimage; 2006 May; 30(4):1292-301. PubMed ID: 16380271 [TBL] [Abstract][Full Text] [Related]
4. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI. de Vries PM; de Jong BM; Bohning DE; Walker JA; George MS; Leenders KL Brain Res; 2009 Aug; 1285():58-68. PubMed ID: 19523932 [TBL] [Abstract][Full Text] [Related]
5. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Rektor I; Sochůrková D; Bocková M Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240 [TBL] [Abstract][Full Text] [Related]
6. The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Cunnington R; Windischberger C; Deecke L; Moser E Neuroimage; 2002 Feb; 15(2):373-85. PubMed ID: 11798272 [TBL] [Abstract][Full Text] [Related]
7. Overlap and segregation in predorsal premotor cortex activations related to free selection of self-referenced and target-based finger movements. Beudel M; de Jong BM Cereb Cortex; 2009 Oct; 19(10):2361-71. PubMed ID: 19168663 [TBL] [Abstract][Full Text] [Related]
8. Who comes first? The role of the prefrontal and parietal cortex in cognitive control. Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690 [TBL] [Abstract][Full Text] [Related]
9. Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation. Rossi S; Pasqualetti P; Zito G; Vecchio F; Cappa SF; Miniussi C; Babiloni C; Rossini PM Eur J Neurosci; 2006 Feb; 23(3):793-800. PubMed ID: 16487159 [TBL] [Abstract][Full Text] [Related]
10. Visuospatial attention: how to measure effects of infrequent, unattended events in a blocked stimulus design. Giessing C; Thiel CM; Stephan KE; Rösler F; Fink GR Neuroimage; 2004 Dec; 23(4):1370-81. PubMed ID: 15589101 [TBL] [Abstract][Full Text] [Related]
11. Cue- versus probe-dependent prefrontal cortex activity during contextual remembering. Dobbins IG; Han S J Cogn Neurosci; 2006 Sep; 18(9):1439-52. PubMed ID: 16989546 [TBL] [Abstract][Full Text] [Related]
12. Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand. François-Brosseau FE; Martinu K; Strafella AP; Petrides M; Simard F; Monchi O Eur J Neurosci; 2009 Mar; 29(6):1277-86. PubMed ID: 19302163 [TBL] [Abstract][Full Text] [Related]
13. The contribution of the inferior parietal lobe to auditory spatial working memory. Alain C; He Y; Grady C J Cogn Neurosci; 2008 Feb; 20(2):285-95. PubMed ID: 18275335 [TBL] [Abstract][Full Text] [Related]
14. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences. Boecker H; Jankowski J; Ditter P; Scheef L Neuroimage; 2008 Feb; 39(3):1356-69. PubMed ID: 18024158 [TBL] [Abstract][Full Text] [Related]
15. Multiple movement representations in the human brain: an event-related fMRI study. Toni I; Shah NJ; Fink GR; Thoenissen D; Passingham RE; Zilles K J Cogn Neurosci; 2002 Jul; 14(5):769-84. PubMed ID: 12167261 [TBL] [Abstract][Full Text] [Related]
16. Prefrontal-subcortical dissociations underlying inhibitory control revealed by event-related fMRI. Kelly AM; Hester R; Murphy K; Javitt DC; Foxe JJ; Garavan H Eur J Neurosci; 2004 Jun; 19(11):3105-12. PubMed ID: 15182319 [TBL] [Abstract][Full Text] [Related]
17. The selection of intended actions and the observation of others' actions: a time-resolved fMRI study. Cunnington R; Windischberger C; Robinson S; Moser E Neuroimage; 2006 Feb; 29(4):1294-302. PubMed ID: 16246592 [TBL] [Abstract][Full Text] [Related]
18. The inhibition of imitative response tendencies. Brass M; Zysset S; von Cramon DY Neuroimage; 2001 Dec; 14(6):1416-23. PubMed ID: 11707097 [TBL] [Abstract][Full Text] [Related]
19. [Reduced contralateral preponderance of the movement-related potential during execution of self-initiated movements in acute prefrontal traumatic brain injury]. Wiese H; Stude P; Nebel K; Osenberg D; Ischebeck W; Stolke D; Diener HC; Keidel M Psychiatr Prax; 2004 Nov; 31 Suppl 1():S47-9. PubMed ID: 15570499 [TBL] [Abstract][Full Text] [Related]
20. The human parietal cortex is involved in spatial processing of tongue movement-an fMRI study. Watanabe J; Sugiura M; Miura N; Watanabe Y; Maeda Y; Matsue Y; Kawashima R Neuroimage; 2004 Apr; 21(4):1289-99. PubMed ID: 15050556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]