BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16054840)

  • 1. Prefrontal cortex activity in self-initiated movements is condition-specific, but not movement-related.
    Wiese H; Stude P; Nebel K; Forsting M; de Greiff A
    Neuroimage; 2005 Nov; 28(3):691-7. PubMed ID: 16054840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement preparation in self-initiated versus externally triggered movements: an event-related fMRI-study.
    Wiese H; Stude P; Nebel K; de Greiff A; Forsting M; Diener HC; Keidel M
    Neurosci Lett; 2004 Nov; 371(2-3):220-5. PubMed ID: 15519761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-initiated movements in chronic prefrontal traumatic brain injury: an event-related functional MRI study.
    Wiese H; Tönnes C; de Greiff A; Nebel K; Diener HC; Stude P
    Neuroimage; 2006 May; 30(4):1292-301. PubMed ID: 16380271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI.
    de Vries PM; de Jong BM; Bohning DE; Walker JA; George MS; Leenders KL
    Brain Res; 2009 Aug; 1285():58-68. PubMed ID: 19523932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI.
    Cunnington R; Windischberger C; Deecke L; Moser E
    Neuroimage; 2002 Feb; 15(2):373-85. PubMed ID: 11798272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overlap and segregation in predorsal premotor cortex activations related to free selection of self-referenced and target-based finger movements.
    Beudel M; de Jong BM
    Cereb Cortex; 2009 Oct; 19(10):2361-71. PubMed ID: 19168663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation.
    Rossi S; Pasqualetti P; Zito G; Vecchio F; Cappa SF; Miniussi C; Babiloni C; Rossini PM
    Eur J Neurosci; 2006 Feb; 23(3):793-800. PubMed ID: 16487159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuospatial attention: how to measure effects of infrequent, unattended events in a blocked stimulus design.
    Giessing C; Thiel CM; Stephan KE; Rösler F; Fink GR
    Neuroimage; 2004 Dec; 23(4):1370-81. PubMed ID: 15589101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cue- versus probe-dependent prefrontal cortex activity during contextual remembering.
    Dobbins IG; Han S
    J Cogn Neurosci; 2006 Sep; 18(9):1439-52. PubMed ID: 16989546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand.
    François-Brosseau FE; Martinu K; Strafella AP; Petrides M; Simard F; Monchi O
    Eur J Neurosci; 2009 Mar; 29(6):1277-86. PubMed ID: 19302163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of the inferior parietal lobe to auditory spatial working memory.
    Alain C; He Y; Grady C
    J Cogn Neurosci; 2008 Feb; 20(2):285-95. PubMed ID: 18275335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences.
    Boecker H; Jankowski J; Ditter P; Scheef L
    Neuroimage; 2008 Feb; 39(3):1356-69. PubMed ID: 18024158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple movement representations in the human brain: an event-related fMRI study.
    Toni I; Shah NJ; Fink GR; Thoenissen D; Passingham RE; Zilles K
    J Cogn Neurosci; 2002 Jul; 14(5):769-84. PubMed ID: 12167261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prefrontal-subcortical dissociations underlying inhibitory control revealed by event-related fMRI.
    Kelly AM; Hester R; Murphy K; Javitt DC; Foxe JJ; Garavan H
    Eur J Neurosci; 2004 Jun; 19(11):3105-12. PubMed ID: 15182319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The selection of intended actions and the observation of others' actions: a time-resolved fMRI study.
    Cunnington R; Windischberger C; Robinson S; Moser E
    Neuroimage; 2006 Feb; 29(4):1294-302. PubMed ID: 16246592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inhibition of imitative response tendencies.
    Brass M; Zysset S; von Cramon DY
    Neuroimage; 2001 Dec; 14(6):1416-23. PubMed ID: 11707097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Reduced contralateral preponderance of the movement-related potential during execution of self-initiated movements in acute prefrontal traumatic brain injury].
    Wiese H; Stude P; Nebel K; Osenberg D; Ischebeck W; Stolke D; Diener HC; Keidel M
    Psychiatr Prax; 2004 Nov; 31 Suppl 1():S47-9. PubMed ID: 15570499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human parietal cortex is involved in spatial processing of tongue movement-an fMRI study.
    Watanabe J; Sugiura M; Miura N; Watanabe Y; Maeda Y; Matsue Y; Kawashima R
    Neuroimage; 2004 Apr; 21(4):1289-99. PubMed ID: 15050556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.