These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16054907)

  • 1. Recovery of precious metals by an electrochemical deposition method.
    Paul Chen J; Lim LL
    Chemosphere; 2005 Sep; 60(10):1384-92. PubMed ID: 16054907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key factors in chemical reduction by hydrazine for recovery of precious metals.
    Chen JP; Lim LL
    Chemosphere; 2002 Oct; 49(4):363-70. PubMed ID: 12365833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous adsorption of copper ions and humic acid onto an activated carbon.
    Chen JP; Wu S
    J Colloid Interface Sci; 2004 Dec; 280(2):334-42. PubMed ID: 15533405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand.
    Wang R; Chakrabarti CL
    Anal Chim Acta; 2008 May; 614(2):153-60. PubMed ID: 18420045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process.
    Chandrasekara Pillai K; Chung SJ; Moon IS
    Chemosphere; 2008 Nov; 73(9):1505-11. PubMed ID: 18762320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic EDTA: coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water.
    Koehler FM; Rossier M; Waelle M; Athanassiou EK; Limbach LK; Grass RN; Günther D; Stark WJ
    Chem Commun (Camb); 2009 Aug; (32):4862-4. PubMed ID: 19652806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic.
    Hanay O; Hasar H; Kocer NN
    J Hazard Mater; 2009 Sep; 169(1-3):703-10. PubMed ID: 19423219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Pb from a calcareous soil during EDTA-enhanced electrokinetic extraction.
    Amrate S; Akretche DE; Innocent C; Seta P
    Sci Total Environ; 2005 Oct; 349(1-3):56-66. PubMed ID: 16198669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling EDTA enhanced electrokinetic remediation of lead contaminated soils.
    Amrate S; Akretche DE
    Chemosphere; 2005 Sep; 60(10):1376-83. PubMed ID: 16054906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution.
    Pociecha M; Lestan D
    J Hazard Mater; 2009 Jun; 165(1-3):533-9. PubMed ID: 19022571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal operational conditions for the electrochemical regeneration of a soil washing EDTA solution.
    Cesaro R; Esposito G
    J Environ Monit; 2009 Feb; 11(2):307-13. PubMed ID: 19212586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper leaching from a sandy soil: mechanism and parameters affecting EDTA extraction.
    Di Palma L; Ferrantelli P
    J Hazard Mater; 2005 Jun; 122(1-2):85-90. PubMed ID: 15943930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of copper anodic-slimes for extraction of valuable metals.
    Amer AM
    Waste Manag; 2003; 23(8):763-70. PubMed ID: 14522195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrocatalytic oxidation of Cu(II)-EDTA at the TiO2 electrode and simultaneous recovery of Cu(II) by electrodeposition.
    Zhao X; Guo L; Zhang B; Liu H; Qu J
    Environ Sci Technol; 2013 May; 47(9):4480-8. PubMed ID: 23521338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques.
    Vaxevanidou K; Papassiopi N; Paspaliaris I
    Chemosphere; 2008 Feb; 70(8):1329-37. PubMed ID: 18037468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process.
    Xiu FR; Zhang FS
    J Hazard Mater; 2009 Jun; 165(1-3):1002-7. PubMed ID: 19056170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Cu2+ and Zn2+ from model wastewaters by spontaneous reduction-coagulation process in flow conditions.
    Bojic ALj; Bojic D; Andjelkovic T
    J Hazard Mater; 2009 Sep; 168(2-3):813-9. PubMed ID: 19297088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greener approach for the extraction of copper metal from electronic waste.
    Jadhao P; Chauhan G; Pant KK; Nigam KD
    Waste Manag; 2016 Nov; 57():102-112. PubMed ID: 26597372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of EDTA on divalent metal adsorption onto grape stalk and exhausted coffee wastes.
    Escudero C; Gabaldón C; Marzal P; Villaescusa I
    J Hazard Mater; 2008 Apr; 152(2):476-85. PubMed ID: 17706350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.