These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 16054919)
1. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils. Senthilkumar P; Prince WS; Sivakumar S; Subbhuraam CV Chemosphere; 2005 Sep; 60(10):1493-6. PubMed ID: 16054919 [TBL] [Abstract][Full Text] [Related]
2. Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium. Varun M; D'Souza R; Pratas J; Paul MS Bull Environ Contam Toxicol; 2011 Jul; 87(1):45-9. PubMed ID: 21556781 [TBL] [Abstract][Full Text] [Related]
3. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil. Lin D; Zhou Q Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428 [TBL] [Abstract][Full Text] [Related]
4. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
5. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. Yang H; Wong JW; Yang ZM; Zhou LX J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773 [TBL] [Abstract][Full Text] [Related]
6. Organ-wise accumulation of fluoride in Prosopis juliflora and its potential for phytoremediation of fluoride contaminated soil. Saini P; Khan S; Baunthiyal M; Sharma V Chemosphere; 2012 Oct; 89(5):633-5. PubMed ID: 22704972 [TBL] [Abstract][Full Text] [Related]
7. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
9. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related]
10. Response of Soltani-Gishini MF; Azizian A; Alemzadeh A; Shabani M; Hildebrand D Int J Phytoremediation; 2022; 24(11):1133-1140. PubMed ID: 34870525 [TBL] [Abstract][Full Text] [Related]
11. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
12. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Guo Z; Megharaj M; Beer M; Ming H; Mahmudur Rahman M; Wu W; Naidu R Bioresour Technol; 2009 Sep; 100(17):3831-6. PubMed ID: 19349173 [TBL] [Abstract][Full Text] [Related]
14. Effects of humic acids on phytoextraction of Cu and Cd from sediment by Elodea nuttallii. Wang Q; Li Z; Cheng S; Wu Z Chemosphere; 2010 Jan; 78(5):604-8. PubMed ID: 19959204 [TBL] [Abstract][Full Text] [Related]
15. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Kuo S; Lai MS; Lin CW Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295 [TBL] [Abstract][Full Text] [Related]
16. In situ bioaccumulation of metals by Prosopis juliflora and its detoxification potential at the metal contaminated sites. Prasath RVA; Mohanraj R Sci Total Environ; 2024 Nov; 951():175715. PubMed ID: 39181271 [TBL] [Abstract][Full Text] [Related]
17. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Song J; Zhao FJ; Luo YM; McGrath SP; Zhang H Environ Pollut; 2004; 128(3):307-15. PubMed ID: 14720473 [TBL] [Abstract][Full Text] [Related]
18. Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Wani PA; Khan MS; Zaidi A Bull Environ Contam Toxicol; 2008 Aug; 81(2):152-8. PubMed ID: 18368281 [TBL] [Abstract][Full Text] [Related]
19. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Bi R; Schlaak M; Siefert E; Lord R; Connolly H Chemosphere; 2011 Apr; 83(3):318-26. PubMed ID: 21237480 [TBL] [Abstract][Full Text] [Related]
20. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Buendía-González L; Orozco-Villafuerte J; Cruz-Sosa F; Barrera-Díaz CE; Vernon-Carter EJ Bioresour Technol; 2010 Aug; 101(15):5862-7. PubMed ID: 20347590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]