These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 16055076)
1. Characterization of sulfate transport in the hepatic endoplasmic reticulum. Csala M; Senesi S; Bánhegyi G; Mandl J; Benedetti A Arch Biochem Biophys; 2005 Aug; 440(2):173-80. PubMed ID: 16055076 [TBL] [Abstract][Full Text] [Related]
2. Evidence for multiple glucuronide transporters in rat liver microsomes. Csala M; Staines AG; Bánhegyi G; Mandl J; Coughtrie MW; Burchell B Biochem Pharmacol; 2004 Oct; 68(7):1353-62. PubMed ID: 15345325 [TBL] [Abstract][Full Text] [Related]
3. The glucose-6-phosphate transport is not mediated by a glucose-6-phosphate/phosphate exchange in liver microsomes. Marcolongo P; Fulceri R; Giunti R; Margittai E; Banhegyi G; Benedetti A FEBS Lett; 2012 Sep; 586(19):3354-9. PubMed ID: 22819816 [TBL] [Abstract][Full Text] [Related]
4. Iodide transport in lactating rat mammary tissue via a pathway independent from the Na+/I- cotransporter: evidence for sulfate/iodide exchange. Shennan DB Biochem Biophys Res Commun; 2001 Feb; 280(5):1359-63. PubMed ID: 11162679 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of microsomal glucose-6-phosphate transport in human neutrophils results in apoptosis: a potential explanation for neutrophil dysfunction in glycogen storage disease type 1b. Leuzzi R; Bánhegyi G; Kardon T; Marcolongo P; Capecchi PL; Burger HJ; Benedetti A; Fulceri R Blood; 2003 Mar; 101(6):2381-7. PubMed ID: 12424192 [TBL] [Abstract][Full Text] [Related]
6. Evidence for glucose-6-phosphate transport in rat liver microsomes. Gerin I; Van Schaftingen E FEBS Lett; 2002 Apr; 517(1-3):257-60. PubMed ID: 12062448 [TBL] [Abstract][Full Text] [Related]
7. Molecular and functional characterization of SLC26A11, a sodium-independent sulfate transporter from high endothelial venules. Vincourt JB; Jullien D; Amalric F; Girard JP FASEB J; 2003 May; 17(8):890-2. PubMed ID: 12626430 [TBL] [Abstract][Full Text] [Related]
8. Transport of adenosine triphosphate into endoplasmic reticulum proteoliposomes. Guillén E; Hirschberg CB Biochemistry; 1995 Apr; 34(16):5472-6. PubMed ID: 7727405 [TBL] [Abstract][Full Text] [Related]
9. Heterogeneity of glucose transport in rat liver microsomal vesicles. Bánhegyi G; Marcolongo P; Burchell A; Benedetti A Arch Biochem Biophys; 1998 Nov; 359(1):133-8. PubMed ID: 9799571 [TBL] [Abstract][Full Text] [Related]
10. Glucuronide transport across the endoplasmic reticulum membrane is inhibited by epigallocatechin gallate and other green tea polyphenols. Révész K; Tütto A; Margittai E; Bánhegyi G; Magyar JE; Mandl J; Csala M Int J Biochem Cell Biol; 2007; 39(5):922-30. PubMed ID: 17317271 [TBL] [Abstract][Full Text] [Related]
11. Transfection of an inducible trout anion exchanger (AE1) into HEK-EcR cells. Davis EM; Musch mW; Goldstein L J Exp Zool; 2002 Jun; 293(1):46-57. PubMed ID: 12115918 [TBL] [Abstract][Full Text] [Related]
12. Permeability of liver microsomal membranes to glucose. Marcolongo P; Fulceri R; Giunti R; Burchell A; Benedetti A Biochem Biophys Res Commun; 1996 Feb; 219(3):916-22. PubMed ID: 8645279 [TBL] [Abstract][Full Text] [Related]
13. N-Bromoacetylethanolamine phosphate as a probe for the identification of a liver microsomal glucose-6-phosphate transporter peptide in rats and Ehrlich ascites tumor-bearing mice. Foster JD; Stevens AL; Nordlie RC Arch Biochem Biophys; 2000 May; 377(1):115-21. PubMed ID: 10775449 [TBL] [Abstract][Full Text] [Related]
14. Dehydroascorbate and ascorbate transport in rat liver microsomal vesicles. Bánhegyi G; Marcolongo P; Puskás F; Fulceri R; Mandl J; Benedetti A J Biol Chem; 1998 Jan; 273(5):2758-62. PubMed ID: 9446582 [TBL] [Abstract][Full Text] [Related]
15. SLC37A1 and SLC37A2 are phosphate-linked, glucose-6-phosphate antiporters. Pan CJ; Chen SY; Jun HS; Lin SR; Mansfield BC; Chou JY PLoS One; 2011; 6(9):e23157. PubMed ID: 21949678 [TBL] [Abstract][Full Text] [Related]
16. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum. Berginc K; Zakelj S; Levstik L; Ursic D; Kristl A Eur J Pharm Biopharm; 2007 May; 66(2):281-5. PubMed ID: 17129714 [TBL] [Abstract][Full Text] [Related]
17. Novel arguments in favor of the substrate-transport model of glucose-6-phosphatase. Gerin I; Noël G; Van Schaftingen E Diabetes; 2001 Jul; 50(7):1531-8. PubMed ID: 11423473 [TBL] [Abstract][Full Text] [Related]
18. Immunodetection of the expression of microsomal proteins encoded by the glucose 6-phosphate transporter gene. Senesi S; Marcolongo P; Kardon T; Bucci G; Sukhodub A; Burchell A; Benedetti A; Fulceri R Biochem J; 2005 Jul; 389(Pt 1):57-62. PubMed ID: 15757503 [TBL] [Abstract][Full Text] [Related]
19. Characterization of sulfate, proline, and glucose transport systems in anterior cruciate and medial collateral ligament cells. Bhargava MM; Kinne-Saffran E; Kinne RK; Warren RF; Hannafin JA Can J Physiol Pharmacol; 2005 Nov; 83(11):1025-30. PubMed ID: 16391711 [TBL] [Abstract][Full Text] [Related]
20. Cloning and functional characterization of a novel up-regulator, cartregulin, of carnitine transporter, OCTN2. Nagai K; Takikawa O; Kawakami N; Fukao M; Soma T; Oda A; Nishiya T; Hayashi M; Lu L; Nakano M; Kajita E; Fujita H; Miwa S Arch Biochem Biophys; 2006 Aug; 452(1):29-37. PubMed ID: 16839516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]