BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16055143)

  • 21. Removal of chlorophenols in aqueous solution by carbon black low-cost adsorbents. Equilibrium study and influence of operation conditions.
    Domínguez-Vargas JR; Navarro-Rodríguez JA; de Heredia JB; Cuerda-Correa EM
    J Hazard Mater; 2009 Sep; 169(1-3):302-8. PubMed ID: 19403238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mechanism of chromate sorption by three variable charge soils.
    Jiang J; Xu R; Wang Y; Zhao A
    Chemosphere; 2008 Apr; 71(8):1469-75. PubMed ID: 18291439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modeling.
    Chisholm-Brause CJ; Berg JM; Little KM; Matzner RA; Morris DE
    J Colloid Interface Sci; 2004 Sep; 277(2):366-82. PubMed ID: 15341848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties.
    Yang K; Zhu L; Lou B; Chen B
    Chemosphere; 2005 Sep; 61(1):116-28. PubMed ID: 16157174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sorption behavior of cesium on various soils under different pH levels.
    Giannakopoulou F; Haidouti C; Chronopoulou A; Gasparatos D
    J Hazard Mater; 2007 Nov; 149(3):553-6. PubMed ID: 17720309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.
    Yang H; Hu Y; Cheng H
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19266-80. PubMed ID: 27364487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrophilic and hydrophobic sorption of organic acids by variable charge soils: effect of chemical acidity and acidic functional group.
    Hyun S; Lee LS
    Environ Sci Technol; 2004 Oct; 38(20):5413-9. PubMed ID: 15543745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 31P solid-state nuclear magnetic resonance study of the sorption of phosphate onto gibbsite and kaolinite.
    Van Emmerik TJ; Sandström DE; Antzutkin ON; Angove MJ; Johnson BB
    Langmuir; 2007 Mar; 23(6):3205-13. PubMed ID: 17266338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inconsistency in the triple layer model description of ionic strength dependent boron adsorption.
    Goldberg S
    J Colloid Interface Sci; 2005 May; 285(2):509-17. PubMed ID: 15837466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of 2,4,6-trichlorophenol with high carbon iron filings: Reaction and sorption mechanisms.
    Sinha A; Bose P
    J Hazard Mater; 2009 May; 164(1):301-9. PubMed ID: 18838219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties.
    He Y; Xu J; Wang H; Ma Z; Chen J
    Environ Res; 2006 Jul; 101(3):362-72. PubMed ID: 16494861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of chlorophenols competitive adsorption on soils by means of the ideal adsorbed solution theory.
    Baciocchi R; Boni MR; Lavecchia R
    J Hazard Mater; 2005 Feb; 118(1-3):239-46. PubMed ID: 15721549
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of organic and mineral soil fractions on sorption behaviour of chlorophenol and triazine micropollutants.
    Stipicević S; Fingler S; Drevenkar V
    Arh Hig Rada Toksikol; 2009 Mar; 60(1):43-52. PubMed ID: 19329375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface complexation of organic arsenic on nanocrystalline titanium oxide.
    Jing C; Meng X; Liu S; Baidas S; Patraju R; Christodoulatos C; Korfiatis GP
    J Colloid Interface Sci; 2005 Oct; 290(1):14-21. PubMed ID: 16122542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge.
    Gao R; Wang J
    J Hazard Mater; 2007 Jul; 145(3):398-403. PubMed ID: 17174025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of aspartic acid on kaolinite.
    Ikhsan J; Johnson BB; Wells JD; Angove MJ
    J Colloid Interface Sci; 2004 May; 273(1):1-5. PubMed ID: 15051428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant.
    Aşçi Y; Nurbaş M; Açikel YS
    J Hazard Mater; 2008 Jun; 154(1-3):663-73. PubMed ID: 18068293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of organic carbon and pH on soil sorption of sulfamethazine.
    Lertpaitoonpan W; Ong SK; Moorman TB
    Chemosphere; 2009 Jul; 76(4):558-64. PubMed ID: 19349062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sorption of chlorophenoxy propionic acids by organoclay complexes.
    Liao CJ; Chen CP; Wang MK; Chiang PN; Pai CW
    Environ Toxicol; 2006 Feb; 21(1):71-9. PubMed ID: 16463262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
    Tighe M; Lockwood P; Wilson S
    J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.