These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 16055154)
1. Measurements of internal distance changes of the 30S ribosome using FRET with multiple donor-acceptor pairs: quantitative spectroscopic methods. Majumdar ZK; Hickerson R; Noller HF; Clegg RM J Mol Biol; 2005 Sep; 351(5):1123-45. PubMed ID: 16055154 [TBL] [Abstract][Full Text] [Related]
2. Measurement of internal movements within the 30 S ribosomal subunit using Förster resonance energy transfer. Hickerson R; Majumdar ZK; Baucom A; Clegg RM; Noller HF J Mol Biol; 2005 Nov; 354(2):459-72. PubMed ID: 16243353 [TBL] [Abstract][Full Text] [Related]
3. Using structure-function constraints in FRET studies of large macromolecular complexes. Bujalowski WM; Jezewska MJ Methods Mol Biol; 2012; 875():135-64. PubMed ID: 22573439 [TBL] [Abstract][Full Text] [Related]
4. Two-step FRET as a structural tool. Watrob HM; Pan CP; Barkley MD J Am Chem Soc; 2003 Jun; 125(24):7336-43. PubMed ID: 12797808 [TBL] [Abstract][Full Text] [Related]
5. Nucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems. Börjesson K; Preus S; El-Sagheer AH; Brown T; Albinsson B; Wilhelmsson LM J Am Chem Soc; 2009 Apr; 131(12):4288-93. PubMed ID: 19317504 [TBL] [Abstract][Full Text] [Related]
6. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H; Schöps O; Woggon U; Niemeyer CM J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889 [TBL] [Abstract][Full Text] [Related]
7. Observation of intersubunit movement of the ribosome in solution using FRET. Ermolenko DN; Majumdar ZK; Hickerson RP; Spiegel PC; Clegg RM; Noller HF J Mol Biol; 2007 Jul; 370(3):530-40. PubMed ID: 17512008 [TBL] [Abstract][Full Text] [Related]
8. FRET-based measurement of GPCR conformational changes. Granier S; Kim S; Fung JJ; Bokoch MP; Parnot C Methods Mol Biol; 2009; 552():253-68. PubMed ID: 19513655 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates. Massey M; Algar WR; Krull UJ Anal Chim Acta; 2006 May; 568(1-2):181-9. PubMed ID: 17761259 [TBL] [Abstract][Full Text] [Related]
10. Dissecting the non-specific and specific components of the initial folding reaction of barstar by multi-site FRET measurements. Sinha KK; Udgaonkar JB J Mol Biol; 2007 Jul; 370(2):385-405. PubMed ID: 17512542 [TBL] [Abstract][Full Text] [Related]
11. Resonance energy transfer between green fluorescent protein variants: complexities revealed with myosin fusion proteins. Zeng W; Seward HE; Málnási-Csizmadia A; Wakelin S; Woolley RJ; Cheema GS; Basran J; Patel TR; Rowe AJ; Bagshaw CR Biochemistry; 2006 Sep; 45(35):10482-91. PubMed ID: 16939200 [TBL] [Abstract][Full Text] [Related]
12. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET. Ranjit S; Gurunathan K; Levitus M J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039 [TBL] [Abstract][Full Text] [Related]
13. Applying spectral fingerprinting to the analysis of FRET images. Neher RA; Neher E Microsc Res Tech; 2004 Jun; 64(2):185-95. PubMed ID: 15352090 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation-induced conformational changes in short peptides probed by fluorescence resonance energy transfer in the 10A domain. Sahoo H; Nau WM Chembiochem; 2007 Mar; 8(5):567-73. PubMed ID: 17299825 [TBL] [Abstract][Full Text] [Related]
15. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions. Kupstat A; Ritschel T; Kumke MU Bioconjug Chem; 2011 Dec; 22(12):2546-57. PubMed ID: 22073970 [TBL] [Abstract][Full Text] [Related]
16. Homogeneous noncompetitive assay of protein via Förster-resonance-energy-transfer with tryptophan residue(s) as intrinsic donor(s) and fluorescent ligand as acceptor. Liao F; Xie Y; Yang X; Deng P; Chen Y; Xie G; Zhu S; Liu B; Yuan H; Liao J; Zhao Y; Yu M Biosens Bioelectron; 2009 Sep; 25(1):112-7. PubMed ID: 19586766 [TBL] [Abstract][Full Text] [Related]
17. Zinc porphyrin as a donor for FRET in Zn(II)cytochrome c. Lee AJ; Ensign AA; Krauss TD; Bren KL J Am Chem Soc; 2010 Feb; 132(6):1752-3. PubMed ID: 20102193 [TBL] [Abstract][Full Text] [Related]
18. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR; Medintz IL; Mattoussi H Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019 [TBL] [Abstract][Full Text] [Related]
19. Detection of conformationally changed MBP using intramolecular FRET. Park K; Lee LH; Shin YB; Yi SY; Kang YW; Sok DE; Chung JW; Chung BH; Kim M Biochem Biophys Res Commun; 2009 Oct; 388(3):560-4. PubMed ID: 19682975 [TBL] [Abstract][Full Text] [Related]
20. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]